41 research outputs found

    The Hamiltonian formulation of General Relativity: myths and reality

    Full text link
    A conventional wisdom often perpetuated in the literature states that: (i) a 3+1 decomposition of space-time into space and time is synonymous with the canonical treatment and this decomposition is essential for any Hamiltonian formulation of General Relativity (GR); (ii) the canonical treatment unavoidably breaks the symmetry between space and time in GR and the resulting algebra of constraints is not the algebra of four-dimensional diffeomorphism; (iii) according to some authors this algebra allows one to derive only spatial diffeomorphism or, according to others, a specific field-dependent and non-covariant four-dimensional diffeomorphism; (iv) the analyses of Dirac [Proc. Roy. Soc. A 246 (1958) 333] and of ADM [Arnowitt, Deser and Misner, in "Gravitation: An Introduction to Current Research" (1962) 227] of the canonical structure of GR are equivalent. We provide some general reasons why these statements should be questioned. Points (i-iii) have been shown to be incorrect in [Kiriushcheva et al., Phys. Lett. A 372 (2008) 5101] and now we thoroughly re-examine all steps of the Dirac Hamiltonian formulation of GR. We show that points (i-iii) above cannot be attributed to the Dirac Hamiltonian formulation of GR. We also demonstrate that ADM and Dirac formulations are related by a transformation of phase-space variables from the metric gμνg_{\mu\nu} to lapse and shift functions and the three-metric gkmg_{km}, which is not canonical. This proves that point (iv) is incorrect. Points (i-iii) are mere consequences of using a non-canonical change of variables and are not an intrinsic property of either the Hamilton-Dirac approach to constrained systems or Einstein's theory itself.Comment: References are added and updated, Introduction is extended, Subsection 3.5 is added, 83 pages; corresponds to the published versio

    Production and Decay of D_1(2420)^0 and D_2^*(2460)^0

    Get PDF
    We have investigated D+π−D^{+}\pi^{-} and D∗+π−D^{*+}\pi^{-} final states and observed the two established L=1L=1 charmed mesons, the D1(2420)0D_1(2420)^0 with mass 2421−2−2+1+22421^{+1+2}_{-2-2} MeV/c2^{2} and width 20−5−3+6+320^{+6+3}_{-5-3} MeV/c2^{2} and the D2∗(2460)0D_2^*(2460)^0 with mass 2465±3±32465 \pm 3 \pm 3 MeV/c2^{2} and width 28−7−6+8+628^{+8+6}_{-7-6} MeV/c2^{2}. Properties of these final states, including their decay angular distributions and spin-parity assignments, have been studied. We identify these two mesons as the jlight=3/2j_{light}=3/2 doublet predicted by HQET. We also obtain constraints on {\footnotesize ΓS/(ΓS+ΓD)\Gamma_S/(\Gamma_S + \Gamma_D)} as a function of the cosine of the relative phase of the two amplitudes in the D1(2420)0D_1(2420)^0 decay.Comment: 15 pages in REVTEX format. hardcopies with figures can be obtained by sending mail to: [email protected]

    Measurement of the branching fraction for Υ(1S)→τ+τ−\Upsilon (1S) \to \tau^+ \tau^-

    Full text link
    We have studied the leptonic decay of the Υ(1S)\Upsilon (1S) resonance into tau pairs using the CLEO II detector. A clean sample of tau pair events is identified via events containing two charged particles where exactly one of the particles is an identified electron. We find B(Υ(1S)→τ+τ−)=(2.61 ± 0.12 +0.09−0.13)B(\Upsilon(1S) \to \tau^+ \tau^-) = (2.61~\pm~0.12~{+0.09\atop{-0.13}})%. The result is consistent with expectations from lepton universality.Comment: 9 pages, RevTeX, two Postscript figures available upon request, CLNS 94/1297, CLEO 94-20 (submitted to Physics Letters B

    Measurement of the Decay Asymmetry Parameters in Λc+→Λπ+\Lambda_c^+ \to \Lambda\pi^+ and Λc+→Σ+π0\Lambda_c^+ \to \Sigma^+\pi^0

    Full text link
    We have measured the weak decay asymmetry parameters (\aLC ) for two \LC\ decay modes. Our measurements are \aLC = -0.94^{+0.21+0.12}_{-0.06-0.06} for the decay mode Λc+→Λπ+\Lambda_c^+ \to \Lambda\pi^+ and \aLC = -0.45\pm 0.31 \pm 0.06 for the decay mode Λc→Σ+π0\Lambda_c \to \Sigma^+\pi^0 . By combining these measurements with the previously measured decay rates, we have extracted the parity-violating and parity-conserving amplitudes. These amplitudes are used to test models of nonleptonic charmed baryon decay.Comment: 11 pages including the figures. Uses REVTEX and psfig macros. Figures as uuencoded postscript. Also available as http://w4.lns.cornell.edu/public/CLNS/1995/CLNS95-1319.p

    A measurement of B(D+S → φl+ν) B(D+S → φπ+)

    Get PDF
    Using the CLEO II detector at CESR, we have measured the ratio of branching fractions B (D + S → φl + ν) B (D + S → φπ + ) = 0.54 ± 0.05 ± 0.04 . We use this measurement to obtain a model dependent estimate of B (D + S → φπ + )

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Roots/Routes: Part II

    No full text
    his narrative acts as an articulation of a journey of many routes. Following Part I of the same research journey of rootedness/routedness, it debates the nature of transformation and transcendence beyond personal and political paradoxes informed by neoliberalism and related repressive globalizing discourses. Through a more personal, descriptive, and philosophical approach, the author seeks to move, in a reflexive manner, beyond the delimiting roots of deficit discourse and its unrootedness with the daily, local, and lived. Through the use of a nontraditional writing-research approach, the author explores other, less objectifying, ways of being in research and attempts to provide alternative pedagogies of possibility away from dichotomous and positivist research engagement. By confronting socially constructed knowledges and identities, and "(re)sourcing" these through "humble togetherness" (Ubuntu), the storying seeks to find a transcendent spirituality through the routes/roots of research and achieve the emergence of transformative possibilities through pedagogies of hope

    Lander techniques for deep-ocean biological research

    Get PDF
    Photographic landers have proved to be a useful tool for deep-ocean biological research. This paper presents a calculation to define the niche landers have when compared to wire gears used on research vessels, and then describes how landers have developed to enable experiments previously only possible in shallow water or in the laboratory to be transported to the deep ocean at depths to 6000m. A number of diverse case studies using the authors' landers are described to illustrate these developments. These studies include fish tracking experiments using the AUDOS (Aberdeen University Deep Ocean Submersible) Lander to study deep-ocean fish movements. Two experiments designed to investigate deep-ocean fish physiology are presented; the first investigated muscle performance of fish in-situ using an electrical stimulator aboard the 'Sprint' Lander; and the second describes a lander capable of trapping and measuring the in-situ oxygen consumption of deep-ocean fish. A further case study to investigate bioluminescence in both the water column and on the sea floor to abyssal depths using the ISIT (Intensified Silicon Intensified Tube) lander is described. Finally, to investigate the effects of time signals on deep-ocean animals a case study using the DOBO (Deep Ocean Benthic Observer) lander is detailed
    corecore