155 research outputs found

    δ-Aminolevulinic acid cytotoxic effects on human hepatocarcinoma cell lines

    Get PDF
    BACKGROUND: Acute Intermittent Porphyria is a genetic disorder of heme metabolism, characterized by increased levels of porphyrin precursors, δ-aminolevulinic acid (ALA) and porphobilinogen (PBG). ALA has been reported to generate reactive oxygen species and to cause oxidative damage to proteins, subcellular structures and DNA. It is known that oxidative stress can induce apoptosis. The aim of this work was to study the cytotoxic effect of ALA on two hepatocarcinoma cell lines. RESULTS: We have determined the impact of ALA on HEP G2 and HEP 3B hepatocarcinoma cell lines survival as measured by the MTT assay. ALA proved to be cytotoxic in both cell lines however; HEP G2 was more sensitive to ALA than HEP 3B. Addition of hemin or glucose diminished ALA cytotoxicity in HEP G2 cells; instead it was enhanced in HEP 3B cells. Because apoptosis is usually associated with DNA fragmentation, the DNA of ALA treated and untreated cells were analyzed. The characteristic pattern of DNA fragmentation ladders was observed in ALA treated cells. To elucidate the mechanisms of ALA induced apoptosis, we examined its effect on p53 expression. No changes in p53 mRNA levels were observed after exposure of both cell lines to ALA for 24 h. CDK2 and CDK4 protein levels were reduced after ALA treatment at physiological concentrations

    β-catenin negatively regulates expression of the prostaglandin transporter PGT in the normal intestinal epithelium and colorectal tumour cells: A role in the chemopreventive efficacy of aspirin

    Get PDF
    Background: Levels of the pro-tumorigenic prostaglandin PGE 2 are increased in colorectal cancer, previously attributed to increased synthesis through COX-2 upregulation and, more recently, to decreased catabolism. The functionally linked genes 15-prostaglandin dehydrogenase (15-PGDH) and the prostaglandin transporter PGT co-operate in prostaglandin degradation and are downregulated in colorectal cancer. We previously reported repression of 15-PGDH expression by the Wnt/β-catenin pathway, commonly deregulated during early colorectal neoplasia. Here we asked whether β-catenin also regulates PGT expression. Methods: The effect of β-catenin deletion in vivo was addressed by PGT immunostaining of β-catenin/lox-villin-cre-ERT2 mouse tissue. The effect of siRNA-mediated β-catenin knockdown and dnTCF4 induction in vitro was addressed by semi-quantitative and quantitative real-time RT-PCR and immunoblotting. Results: This study shows for the first time that deletion of β-catenin in murine intestinal epithelium in vivo upregulates PGT protein, especially in the crypt epithelium. Furthermore, β-catenin knockdown in vitro increases PGT expression in both colorectal adenoma-and carcinoma-derived cell lines, as does dnTCF4 induction in LS174T cells.Conclusions:These data suggest that β-catenin employs a two-pronged approach to inhibiting prostaglandin turnover during colorectal neoplasia by repressing PGT expression in addition to 15-PGDH. Furthermore, our data highlight a potential mechanism that may contribute to the non-selective NSAID aspirins chemopreventive efficacy. © 2012 Cancer Research UK All rights reserved

    Germline EPHB2 Receptor Variants in Familial Colorectal Cancer

    Get PDF
    Familial clustering of colorectal cancer occurs in 15–20% of cases, however recognized cancer syndromes explain only a small fraction of this disease. Thus, the genetic basis for the majority of hereditary colorectal cancer remains unknown. EPHB2 has recently been implicated as a candidate tumor suppressor gene in colorectal cancer. The aim of this study was to evaluate the contribution of EPHB2 to hereditary colorectal cancer. We screened for germline EPHB2 sequence variants in 116 population-based familial colorectal cancer cases by DNA sequencing. We then estimated the population frequencies and characterized the biological activities of the EPHB2 variants identified. Three novel nonsynonymous missense alterations were detected. Two of these variants (A438T and G787R) result in significant residue changes, while the third leads to a conservative substitution in the carboxy-terminal SAM domain (V945I). The former two variants were found once in the 116 cases, while the V945I variant was present in 2 cases. Genotyping of additional patients with colorectal cancer and control subjects revealed that A438T and G787R represent rare EPHB2 alleles. In vitro functional studies show that the G787R substitution, located in the kinase domain, causes impaired receptor kinase activity and is therefore pathogenic, whereas the A438T variant retains its receptor function and likely represents a neutral polymorphism. Tumor tissue from the G787R variant case manifested loss of heterozygosity, with loss of the wild-type allele, supporting a tumor suppressor role for EPHB2 in rare colorectal cancer cases. Rare germline EPHB2 variants may contribute to a small fraction of hereditary colorectal cancer

    Krüppel-like Factor 4 Regulates Intestinal Epithelial Cell Morphology and Polarity

    Get PDF
    Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor that plays a vital role in regulating cell lineage differentiation during development and maintaining epithelial homeostasis in the intestine. In normal intestine, KLF4 is predominantly expressed in the differentiated epithelial cells. It has been identified as a tumor suppressor in colorectal cancer. KLF4 knockout mice demonstrated a decrease in number of goblet cells in the colon, and conditional ablation of KLF4 from the intestinal epithelium led to altered epithelial homeostasis. However, the role of KLF4 in differentiated intestinal cells and colon cancer cells, as well as the mechanism by which it regulates homeostasis and represses tumorigenesis in the intestine is not well understood. In our study, KLF4 was partially depleted in the differentiated intestinal epithelial cells by a tamoxifen-inducible Cre recombinase. We found a significant increase in the number of goblet cells in the KLF4-deleted small intestine, suggesting that KLF4 is not only required for goblet cell differentiation, but also required for maintaining goblet cell numbers through its function in inhibiting cell proliferation. The number and position of Paneth cells also changed. This is consistent with the KLF4 knockout study using villin-Cre [1]. Through immunohistochemistry (IHC) staining and statistical analysis, we found that a stem cell and/or tuft cell marker, DCAMKL1, and a proliferation marker, Ki67, are affected by KLF4 depletion, while an enteroendocrine cell marker, neurotensin (NT), was not affected. In addition, we found KLF4 depletion altered the morphology and polarity of the intestinal epithelial cells. Using a three-dimensional (3D) intestinal epithelial cyst formation assay, we found that KLF4 is essential for cell polarity and crypt-cyst formation in human colon cancer cells. These findings suggest that, as a tumor suppressor in colorectal cancer, KLF4 affects intestinal epithelial cell morphology by regulating proliferation, differentiation and polarity of the cells

    E-cadherin and loss of heterozygosity at chromosome 16 in breast carcinogenesis: different genetic pathways in ductal and lobular breast cancer?

    Get PDF
    Loss of heterozygosity at the long arm of chromosome 16 is one of the most frequent genetic events in breast cancer. In the search for tumour suppressor genes that are the target of loss of heterozygosity at 16q, the E-cadherin gene CDH1 was unveiled by the identification of truncating mutations in the retained copy. However, only lobular tumours showed E-cadherin mutations. Whereas investigations are still devoted to finding the target genes in the more frequent ductal breast cancers, other studies suspect the E-cadherin gene to also be the target in this tumour type. The present article discusses the plausibility of those two lines of thought

    Global mortality and readmission rates following COPD exacerbation-related hospitalisation: a meta-analysis of 65 945 individual patients

    Get PDF
    \ua9 2024, European Respiratory Society. All rights reserved.Background Exacerbations of COPD (ECOPD) have a major impact on patients and healthcare systems across the world. Precise estimates of the global burden of ECOPD on mortality and hospital readmission are needed to inform policy makers and aid preventive strategies to mitigate this burden. The aims of the present study were to explore global in-hospital mortality, post-discharge mortality and hospital readmission rates after ECOPD-related hospitalisation using an individual patient data meta-analysis (IPDMA) design. Methods A systematic review was performed identifying studies that reported in-hospital mortality, postdischarge mortality and hospital readmission rates following ECOPD-related hospitalisation. Data analyses were conducted using a one-stage random-effects meta-analysis model. This study was conducted and reported in accordance with the PRISMA-IPD statement. Results Data of 65 945 individual patients with COPD were analysed. The pooled in-hospital mortality rate was 6.2%, pooled 30-, 90- and 365-day post-discharge mortality rates were 1.8%, 5.5% and 10.9%, respectively, and pooled 30-, 90- and 365-day hospital readmission rates were 7.1%, 12.6% and 32.1%, respectively, with noticeable variability between studies and countries. Strongest predictors of mortality and hospital readmission included noninvasive mechanical ventilation and a history of two or more ECOPD-related hospitalisation

    Activated MCTC mast cells infiltrate diseased lung areas in cystic fibrosis and idiopathic pulmonary fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although mast cells are regarded as important regulators of inflammation and tissue remodelling, their role in cystic fibrosis (CF) and idiopathic pulmonary fibrosis (IPF) has remained less studied. This study investigates the densities and phenotypes of mast cell populations in multiple lung compartments from patients with CF, IPF and never smoking controls.</p> <p>Methods</p> <p>Small airways, pulmonary vessels, and lung parenchyma were subjected to detailed immunohistochemical analyses using lungs from patients with CF (20 lung regions; 5 patients), IPF (21 regions; 7 patients) and controls (16 regions; 8 subjects). In each compartment the densities and distribution of MC<sub>T </sub>and MC<sub>TC </sub>mast cell populations were studied as well as the mast cell expression of IL-6 and TGF-β.</p> <p>Results</p> <p>In the alveolar parenchyma in lungs from patients with CF, MC<sub>TC </sub>numbers increased in areas showing cellular inflammation or fibrosis compared to controls. Apart from an altered balance between MC<sub>TC </sub>and MC<sub>T </sub>cells, mast cell in CF lungs showed elevated expression of IL-6. In CF, a decrease in total mast cell numbers was observed in small airways and pulmonary vessels. In patients with IPF, a significantly elevated MC<sub>TC </sub>density was present in fibrotic areas of the alveolar parenchyma with increased mast cell expression of TGF-β. The total mast cell density was unchanged in small airways and decreased in pulmonary vessels in IPF. Both the density, as well as the percentage, of MC<sub>TC </sub>correlated positively with the degree of fibrosis. The increased density of MC<sub>TC</sub>, as well as MC<sub>TC </sub>expression of TGF-β, correlated negatively with patient lung function.</p> <p>Conclusions</p> <p>The present study reveals that altered mast cell populations, with increased numbers of MC<sub>TC </sub>in diseased alveolar parenchyma, represents a significant component of the histopathology in CF and IPF. The mast cell alterations correlated to the degree of tissue remodelling and to lung function parameters. Further investigations of mast cells in these diseases may open for new therapeutic strategies.</p

    Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells

    Get PDF
    INTRODUCTION: CCN6/WISP3 belongs to the CCN (Cyr61, CTGF, Nov) family of genes that contains a conserved insulin-like growth factor (IGF) binding protein motif. CCN6 is a secreted protein lost in 80% of the aggressive inflammatory breast cancers, and can decrease mammary tumor growth in vitro and in vivo. We hypothesized that inhibition of CCN6 might result in the loss of a growth regulatory function that protects mammary epithelial cells from the tumorigenic effects of growth factors, particularly IGF-1. METHOD: We treated human mammary epithelial (HME) cells with a CCN6 hairpin short interfering RNA. RESULTS: CCN6-deficient cells showed increased motility and invasiveness, and developed features of epithelial-mesenchymal transition (EMT). Inhibition of CCN6 expression promoted anchorage-independent growth of HME cells and rendered them more responsive to the growth effects of IGF-1, which was coupled with the increased phosphorylation of IGF-1 receptor and insulin receptor substrate-1 (IRS-1). CONCLUSION: Specific stable inhibition of CCN6 expression in HME cells induces EMT, promotes anchorage-independent growth, motility and invasiveness, and sensitizes mammary epithelial cells to the growth effects of IGF-1

    Adherence to a Mediterranean-like dietary pattern in children from eight European countries : the IDEFICS study

    Get PDF
    BACKGROUND: Despite documented benefits of a Mediterranean-like dietary pattern, there is a lack of knowledge about how children from different European countries compare with each other in relation to the adherence to this pattern. In response to this need, we calculated the Mediterranean diet score (MDS) in 2-9-year-old children from the Identification and prevention of dietary-and lifestyle-induced health effects in children and infants (IDEFICS) eight-country study. SUBJECTS AND METHODS: Using 24 h dietary recall data obtained during the IDEFICS study (n = 7940), an MDS score was calculated based on the age- and sex-specific population median intakes of six food groups (vegetables and legumes, fruit and nuts, cereal grains and potatoes, meat products and dairy products) and the ratio of unsaturated to saturated fats. For fish and seafood, which was consumed by 10% of the population, one point was given to consumers. The percentages of children with high MDS levels (43) were calculated and stratified by sex, age and by having at least one migrant parent or both native parents. Demographic (sex and age) and socioeconomic characteristics (parental education and income) of children showing high (43) vs low (<= 3) MDS levels were examined. RESULTS: The highest prevalence of children with MDS 43 was found among the Italian pre-school boys (55.9%) and the lowest among the Spanish school-aged girls (26.0%). Higher adherence to a Mediterranean-like dietary pattern was not associated with living in a Mediterranean country or in a highly educated or high-income family, although with some exceptions. Differences in adherence between boys and girls or age groups varied between countries without any general pattern. CONCLUSIONS: With the exception of Italian pre-schoolers, similar adherence levels to a Mediterranean-like dietary pattern have been observed among European children

    Unraveling the effect of silent, intronic and missense mutations on VWF splicing: contribution of next generation sequencing in the study of mRNA

    Get PDF
    Large studies in von Willebrand disease patients, including Spanish and Portuguese registries, led to identification of >250 different mutations. It is a challenge to determine the pathogenic effect of potential splice site mutations on VWF mRNA. This study aimed to elucidate the true effects of 18 mutations on VWF mRNA processing, investigate the contribution of next-generation sequencing to in vivo mRNA study in von Willebrand disease, and compare the findings with in silico prediction. RNA extracted from patient platelets and leukocytes was amplified by RT-PCR and sequenced using Sanger and next generation sequencing techniques. Eight mutations affected VWF splicing: c.1533+1G>A, c.5664+2T>C and c.546G>A (p.=) prompted exon skipping; c.3223-7_3236dup and c.7082-2A>G resulted in activation of cryptic sites; c.3379+1G>A and c.7473G>A (p.=) demonstrated both molecular pathogenic mechanisms simultaneously; and the p.Cys370Tyr missense mutation generated two aberrant transcripts. Of note, the complete effect of 3 mutations was provided by next generation sequencing alone because of low expression of the aberrant transcripts. In the remaining 10 mutations, no effect was elucidated in the experiments. However, the differential findings obtained in platelets and leukocytes provided substantial evidence that 4 of these would have an effect on VWF levels. In this first report using next generation sequencing technology to unravel the effects of VWF mutations on splicing, the technique yielded valuable information. Our data bring to light the importance of studying the effect of synonymous and missense mutations on VWF splicing to improve the current knowledge of the molecular mechanisms behind von Willebrand disease.info:eu-repo/semantics/publishedVersio
    corecore