175 research outputs found

    Clostridium difficile sortase recognizes a (S/P)PXTG sequence motif and can accommodate diaminopimelic acid as a substrate for transpeptidation

    Get PDF
    AbstractCovalent attachment of surface proteins to the cell wall of Gram-positive bacteria requires a sortase-mediated transpeptidation reaction. In almost all Gram-positive bacteria, the housekeeping sortase, sortase A, recognizes the canonical recognition sequence LPXTG (X=any amino acid). The human pathogen Clostridium difficile carries a single putative sortase gene (cd2718) but neither transpeptidation activity nor specificity of CD2718 has been investigated. We produced recombinant CD2718 and examined its transpeptidation activity in vitro using synthetic peptides and MALDI-ToF(-ToF) MS analysis. We demonstrate that CD2718 has sortase activity with specificity for a (S/P)PXTG motif and can accommodate diaminopimelic acid as a substrate for transpeptidation

    Modulation of the functional interfaces between retroviral intasomes and the human nucleosome

    Get PDF
    Retroviral integration into cell chromatin requires the formation of integrase-viral DNA complexes, called intasomes, and their interaction with the target DNA wrapped around nucleosomes. To further study this mechanism we developed an alphaLISA approach using the prototype foamy virus (PFV) intasome and human nucleosome. This system allowed us to monitor the association between both partners and investigate the protein/protein and protein/DNA interactions engaged in the association with chromatin. Using this approach, we next screened the chemical OncoSET library and selected small molecules that could modulate the intasome/nucleosome complex. Molecules were selected as acting either on the DNA topology within the nucleosome or on the integrase/histone tail interactions. Within these compounds, doxorubicin and histone binders calixarenes were characterized using biochemical, structural and cellular approaches. These drugs were shown to inhibit PFV and HIV-1 integration in vitro as well as HIV-1 infection in primary PBMCs cells. Our work provides new information about intasome-nucleosome interaction determinants and paves the way for further unedited antiviral strategies that target the final step of intasome/chromatin anchoring

    Population genomics applications for conservation: the case of the tropical dry forest dweller Peromyscus melanophrys

    Get PDF
    Recent advances in genomic sequencing have opened new horizons in the study of population genetics and evolution in non-model organisms. However, very few population genomic studies have been performed on wild mammals to understand how the landscape affects the genetic structure of populations, useful information for the conservation of biodiversity. Here, we applied a genomic approach to evaluate the relationship between habitat features and genetic patterns at spatial and temporal scales in an endangered ecosystem, the Tropical Dry Forest (TDF). We studied populations of the Plateau deer mouse Peromyscus melanophrys to analyse its genomic diversity and structure in a TDF protected area in the Huautla Mountain Range (HMR), Mexico based on 8,209 SNPs obtained through Genotyping-by-Sequencing. At a spatial scale, we found a significant signature of isolation-by-distance, few significant differences in genetic diversity indices among study sites, and no significant differences between habitats with different levels of human perturbation. At a temporal scale, while genetic diversity levels fluctuated significantly over time, neither seasonality nor disturbance levels had a significant effect. Also, outlier analysis revealed loci potentially under selection. Our results suggest that the population genetics of P. melanophrys may be little impacted by anthropogenic disturbances, or by natural spatial and temporal habitat heterogeneity in our study area. The genome-wide approach adopted here provides data of value for conservation planning, and a baseline to be used as a reference for future studies on the effects of habitat fragmentation and seasonality in the HMR and in TDF

    Constitutive modelling of skin ageing

    Get PDF
    The objective of this chapter is to review the main biomechanical and structural aspects associated with both intrinsic and extrinsic skin ageing, and to present potential research avenues to account for these effects in mathematical and computational models of the skin. This will be illustrated through recent work of the authors which provides a basis to those interested in developing mechanistic constitutive models capturing the mechanobiology of skin across the life course

    Evidence of a causal and modifiable relationship between kidney function and circulating trimethylamine N-oxide

    Get PDF
    The host-microbiota co-metabolite trimethylamine N-oxide (TMAO) is linked to increased cardiovascular risk but how its circulating levels are regulated remains unclear. We applied "explainable" machine learning, univariate, multivariate and mediation analyses of fasting plasma TMAO concentration and a multitude of phenotypes in 1,741 adult Europeans of the MetaCardis study. Here we show that next to age, kidney function is the primary variable predicting circulating TMAO, with microbiota composition and diet playing minor, albeit significant, roles. Mediation analysis suggests a causal relationship between TMAO and kidney function that we corroborate in preclinical models where TMAO exposure increases kidney scarring. Consistent with our findings, patients receiving glucose-lowering drugs with reno-protective properties have significantly lower circulating TMAO when compared to propensity-score matched control individuals. Our analyses uncover a bidirectional relationship between kidney function and TMAO that can potentially be modified by reno-protective anti-diabetic drugs and suggest a clinically actionable intervention for decreasing TMAO-associated excess cardiovascular risk

    Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology

    Get PDF
    Microbiota-host-diet interactions contribute to the development of metabolic diseases. Imidazole propionate is a novel microbially produced metabolite from histidine, which impairs glucose metabolism. Here, we show that subjects with prediabetes and diabetes in the MetaCardis cohort from three European countries have elevated serum imidazole propionate levels. Furthermore, imidazole propionate levels were increased in subjects with low bacterial gene richness and Bacteroides 2 enterotype, which have previously been associated with obesity. The Bacteroides 2 enterotype was also associated with increased abundance of the genes involved in imidazole propionate biosynthesis from dietary histidine. Since patients and controls did not differ in their histidine dietary intake, the elevated levels of imidazole propionate in type 2 diabetes likely reflects altered microbial metabolism of histidine, rather than histidine intake per se. Thus the microbiota may contribute to type 2 diabetes by generating imidazole propionate that can modulate host inflammation and metabolism
    • …
    corecore