1,467 research outputs found

    Chlorinated organic contaminants in breast milk of New Zealand women.

    Get PDF
    Breast milk samples from 38 women in New Zealand were analyzed for organochlorine pesticides, polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), and polychlorinated dibenzofurans (PCDFs) as part of a World Health Organization collaborative study of breast-milk contaminants. The women were recruited from two urban areas (Auckland and Christchurch) and two rural areas (Northland and North Canterbury) in the North and South Islands of New Zealand. The best predictor of contaminant concentrations in breast milk was found to be the age of the mother. Regional differences were found for hexachlorobenzene, dieldrin, and pp-DDE, reflecting historical use patterns. Urban-rural differences were found for several PCBs, PCDDs, and PCDFs when contaminant concentrations were calculated on a whole-milk basis. However, these differences could be attributed to variation in breast-milk fat concentrations between urban and rural mothers. Urban mothers had about 50% more breast-milk fat than rural mothers. Evidence suggests that breast-milk consumption by babies is regulated by caloric intake. Almost all of the caloric content of milk is in the fat fraction. This suggests that breast-milk contaminant levels calculated on a whole-milk basis do not necessarily reflect the relative levels of exposure of infants to these contaminants. However, the factors that influence breast-milk fat concentration deserve further study

    Stable Frank-Kasper phases of self-assembled, soft matter spheres

    Full text link
    Single molecular species can self-assemble into Frank Kasper (FK) phases, finite approximants of dodecagonal quasicrystals, defying intuitive notions that thermodynamic ground states are maximally symmetric. FK phases are speculated to emerge as the minimal-distortional packings of space-filling spherical domains, but a precise quantitation of this distortion and how it affects assembly thermodynamics remains ambiguous. We use two complementary approaches to demonstrate that the principles driving FK lattice formation in diblock copolymers emerge directly from the strong-stretching theory of spherical domains, in which minimal inter-block area competes with minimal stretching of space-filling chains. The relative stability of FK lattices is studied first using a diblock foam model with unconstrained particle volumes and shapes, which correctly predicts not only the equilibrium {\sigma} lattice, but also the unequal volumes of the equilibrium domains. We then provide a molecular interpretation for these results via self-consistent field theory, illuminating how molecular stiffness regulates the coupling between intra-domain chain configurations and the asymmetry of local packing. These findings shed new light on the role of volume exchange on the formation of distinct FK phases in copolymers, and suggest a paradigm for formation of FK phases in soft matter systems in which unequal domain volumes are selected by the thermodynamic competition between distinct measures of shape asymmetry.Comment: 40 pages, 22 figure

    Vibronic interactions in the visible and near-infrared spectra of C60− anions

    Get PDF
    Electron-phonon coupling is an important factor in understanding many properties of the C60 fullerides. However, there has been little success in quantifying the strength of the vibronic coupling in C60 ions, with considerable disagreement between experimental and theoretical results. We will show that neglect of quadratic coupling in previous models for C60- ions results in a significant overestimate of the linear coupling constants. Including quadratic coupling allows a coherent interpretation to be made of earlier experimental and theoretical results which at first sight are incompatible

    Tunable light and drug induced depletion of target proteins

    Get PDF
    Biological processes in development and disease are controlled by the abundance, localization and modification of cellular proteins. We have developed versatile tools based on recombinant E3 ubiquitin ligases that are controlled by light or drug induced heterodimerization for nanobody or DARPin targeted depletion of endogenous proteins in cells and organisms. We use this rapid, tunable and reversible protein depletion for functional studies of essential proteins like PCNA in DNA repair and to investigate the role of CED-3 in apoptosis during Caenorhabditis elegans development. These independent tools can be combined for spatial and temporal depletion of different sets of proteins, can help to distinguish immediate cellular responses from long-term adaptation effects and can facilitate the exploration of complex networks

    The Hlx homeobox transcription factor is required early in enteric nervous system development

    Get PDF
    BACKGROUND: Development of the enteric nervous system (ENS) requires interactions between migrating neural crest cells and the nascent gastrointestinal tract that are dependent upon genes expressed by both cell compartments. Hlx, a homeobox transcription factor gene that is expressed in mouse intestinal and hepatic mesenchyme, is required for normal embryonic growth of intestine and liver, and the Hlx(-/- )genotype is embryonic lethal. We hypothesized that Hlx is required for ENS development. RESULTS: Enteric neurons were identified in Hlx(+/+ )and Hlx(-/- )mouse embryos by immunostaining of embryo sections for the neural markers PGP9.5 and Phox2b, or by staining for β-galactosidase in whole-mount embryos containing the dopamine β-hydroxylase-nLacZ transgene. In Hlx(+/+ )embryos, neural crest cells/enteric neurons have moved from the stomach into the intestine by E10.5. By contrast, neural crest cells/enteric neurons remain largely restricted to the lateral stomach mesenchyme of Hlx(-/- )embryos, with only a few scattered neural crest cells/enteric neurons in the intestine between E10.5–16.5. CONCLUSION: The Hlx homeobox transcription factor is required for early aspects of ENS development

    Observation of ultrafast internal conversion in fullerene anions in solution

    Get PDF
    The ultrafast decay rates of photoexcited View the MathML source ions have been measured in the condensed phase. The mechanism for decay is internal conversion, and the decay rate is a strong function of the charge on the ion. A bottleneck in the ground state recovery has also been detected, and its interpretation is discussed
    • …
    corecore