7,217 research outputs found
Analogue and digital linear modulation techniques for mobile satellite
The choice of modulation format for a mobile satellite service is complex. The subjective performance is summarized of candidate schemes and voice coder technologies. It is shown that good performance can be achieved with both analogue and digital voice systems, although the analogue system gives superior performance in fading. The results highlight the need for flexibility in the choice of signaling format. Linear transceiver technology capable of using many forms of narrowband modulation is described
Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 3: Support of the design process
The user requirements for computer support of the IPAD design process are identified. The user-system interface, language, equipment, and computational requirements are considered
A probabilistic approach to some results by Nieto and Truax
In this paper, we reconsider some results by Nieto and Truax about generating
functions for arbitrary order coherent and squeezed states. These results were
obtained using the exponential of the Laplacian operator; more elaborated
operational identities were used by Dattoli et al. \cite{Dattoli} to extend
these results. In this note, we show that the operational approach can be
replaced by a purely probabilistic approach, in the sense that the exponential
of derivatives operators can be identified with equivalent expectation
operators. This approach brings new insight about the kinks between operational
and probabilistic calculus.Comment: 2nd versio
Propagation of a Solitary Fission Wave
Reaction-diffusion phenomena are encountered in an astonishing array of natural systems. Under the right conditions, self stabilizing reaction waves can arise that will propagate at constant velocity. Numerical studies have shown that fission waves of this type are also possible and that they exhibit soliton like properties. Here, we derive the conditions required for a solitary fission wave to propagate at constant velocity. The results place strict conditions on the shapes of the flux, diffusive, and reactive profiles that would be required for such a phenomenon to persist, and this condition would apply to other reaction diffusion phenomena as well. Numerical simulations are used to confirm the results and show that solitary fission waves fall into a bistable class of reaction diffusion phenomena. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729927]United States Nuclear Regulatory Commission NRC-38-08-946Mechanical Engineerin
Relativistic and Radiative Corrections to the Mollow Spectrum
The incoherent, inelastic part of the resonance fluorescence spectrum of a
laser-driven atom is known as the Mollow spectrum [B. R. Mollow, Phys. Rev.
188, 1969 (1969)]. Starting from this level of description, we discuss
theoretical foundations of high-precision spectroscopy using the resonance
fluorescence light of strongly laser-driven atoms. Specifically, we evaluate
the leading relativistic and radiative corrections to the Mollow spectrum, up
to the relative orders of (Z alpha)^2 and alpha(Z alpha)^2, respectively, and
Bloch-Siegert shifts as well as stimulated radiative corrections involving
off-resonant virtual states. Complete results are provided for the hydrogen
1S-2P_{1/2} and 1S-2P_{3/2} transitions; these include all relevant correction
terms up to the specified order of approximation and could directly be compared
to experimental data. As an application, the outcome of such experiments would
allow for a sensitive test of the validity of the dressed-state basis as the
natural description of the combined atom-laser system.Comment: 20 pages, 1 figure; RevTe
Laplace transform of spherical Bessel functions
We provide a simple analytic formula in terms of elementary functions for the
Laplace transform j_{l}(p) of the spherical Bessel function than that appearing
in the literature, and we show that any such integral transform is a polynomial
of order l in the variable p with constant coefficients for the first l-1
powers, and with an inverse tangent function of argument 1/p as the coefficient
of the power l. We apply this formula for the Laplace transform of the memory
function related to the Langevin equation in a one-dimensional Debye model.Comment: 5 pages LATEX, no figures. Accepted 2002, Physica Script
On the unitarity of higher-dervative and nonlocal theories
We consider two simple models of higher-derivative and nonlocal quantu
systems.It is shown that, contrary to some claims found in literature, they can
be made unitary.Comment: 8 pages, no figure
Geodesics around Weyl-Bach's Ring Solution
We explore some of the gravitational features of a uniform ring both in the
Newtonian potential theory and in General Relativity. We use a spacetime
associated to a Weyl static solution of the vacuum Einstein's equations with
ring like singularity. The Newtonian motion for a test particle in the
gravitational field of the ring is studied and compared with the corresponding
geodesic motion in the given spacetime. We have found a relativistic peculiar
attraction: free falling particle geodesics are lead to the inner rim but never
hit the ring.Comment: 8 figures, 14 pages. LaTeX w/ subfigure, graphic
Minimal coupling method and the dissipative scalar field theory
Quantum field theory of a damped vibrating string as the simplest dissipative
scalar field investigated by its coupling with an infinit number of
Klein-Gordon fields as the environment by introducing a minimal coupling
method. Heisenberg equation containing a dissipative term proportional to
velocity obtained for a special choice of coupling function and quantum
dynamics for such a dissipative system investigated. Some kinematical relations
calculated by tracing out the environment degrees of freedom. The rate of
energy flowing between the system and it's environment obtained.Comment: 15 pages, no figur
- …
