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Abstract

In this paper we study generalised prime systems for which the integer counting function
NP(x) is asymptotically well-behaved, in the sense that NP(x) = ρx + O(xβ), where ρ is
a positive constant and β < 1

2 . For such systems, the associated zeta function ζP(s) is
holomorphic for σ = <s > β. We prove that for β < σ < 1

2 ,
∫ T

0
|ζP(σ+ it)|2dt = Ω(T 2−2σ−ε)

for any ε > 0, and also for ε = 0 for all such σ except possibly one value.
The Dirichlet divisor problem for generalised integers concerns the size of the error term

in NkP(x) − Ress=1(ζP(s)kxs/s), which is O(xθ) for some θ < 1. Letting αk denote the
infimum of such θ, we show that αk ≥ 1

2 − 1
2k .
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1. Introduction
A generalised prime system (or g-prime system) P is a sequence of positive reals p1, p2, p3, . . .
satisfying

1 < p1 ≤ p2 ≤ · · · ≤ pn ≤ · · ·
and for which pn → ∞ as n → ∞. From these can be formed the system N of generalised
integers or Beurling integers; that is, the numbers of the form

pa1
1 pa2

2 . . . pak
k

where k ∈ N and a1, . . . , ak ∈ N0.2 Such systems were first introduced by Beurling [2] and have
been studied by many authors since then (see in particular [1]). Define the g-integer counting
function NP(x) and the associated Beurling zeta function, respectively, by

NP(x) =
∑

n∈N ,n≤x

1, ζP(s) =
∑

n∈N

1
ns

.

(Here,
∑

n∈N means a sum over all the g-integers, counting multiplicities.) In this paper, we
shall be concerned with g-prime systems for which

NP(x) = ρx + O(xβ), (1.1)

for some β < 1
2 and ρ > 0. Then ζP(s) is defined and holomorphic for <s > 1, and has an

analytic continuation to the half-plane <s > β except for a simple pole at s = 1 with residue
ρ. Furthermore, ζP(s) has finite order for <s > β; i.e. ζP(σ + it) = O(|t|λ) for some λ for
σ > β. Let µP(σ) denote the infimum of all such λ. It is well-known that µP(σ) is non-negative,

1Journal of Number Theory 130 (2010) 707-715.
2Here, N = {1, 2, 3, . . .}, N0 = N ∪ {0}, and P = {2, 3, 5, . . .} — the set of primes.
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decreasing, and convex (and hence continuous) (see, for example, [5]). For P = P (so that
N = N), the Lindelöf Hypothesis is the conjecture that µP(σ) = µ0(σ) for all σ, where

µ0(σ) =
{

1
2 − σ if σ < 1

2
0 if σ ≥ 1

2

.

In [4], it was proven that for all g-prime systems satisfying (1.1), µP(σ) must be at least as
large as µ0(σ): i.e. µP(σ) ≥ 1

2 − σ for σ ∈ (β, 1
2). In this paper we prove a stronger result by

considering the mean square behaviour of ζP(σ + it). For σ > β, define νP(σ) to be the infimum
of numbers λ such that ∫ T

1
|ζP(σ + it)|2 dt = O(T 1+2λ).

As in the case of µP(σ), νP(σ) is non-negative and convex decreasing (cf. [6], §7.8). Trivially,
νP(σ) ≤ µP(σ). We show here that νP(σ) ≥ µ0(σ). In fact we prove slightly more.

Theorem 1
Let P be a g-prime system for which (1.1) holds for some β < 1

2 and ρ > 0. Then νP(σ) ≥ µ0(σ)
for σ ∈ (β, 1

2). Furthermore,

∫ T

0
|ζP(σ + it)|2 dt = o(T 2−2σ) (1.2)

can hold for at most one value of σ in this range. In this case T 2σ−2
∫ T
0 |ζP(σ + it)|2dt is un-

bounded for all other values of σ.

Remark. For P = P, we have νP(σ) = µ0(σ), which shows the first part of Theorem 1 is best
possible. However, in this case we have the asymptotic formula

∫ T

1
|ζ(σ + it)|2 dt ∼ ζ(2− 2σ)

(2π)1−2σ(2− 2σ)
T 2−2σ

for 0 < σ < 1
2 , showing that the exceptional value need not exist. In fact it seems unlikely an

exceptional value exists and hence that
∫ T
0 |ζP(σ + it)|2dt = Ω(T 2−2σ) for all σ ∈ (β, 1

2), but we
cannot quite show this. Furthermore it seems plausible that we should have

∫ T
0 |ζP(σ+ it)|2dt ≥

CσT 2−2σ for some Cσ > 0.

2. Dirichlet divisor problems for g-primes
For a g-prime system satisfying (1.1) (with β < 1), we can study the equivalent of the Dirichlet
divisor problem concerning the error term in the asymptotic formula for the average of the
‘generalised divisor’ function. For k ∈ N, let kP denote the g-prime system obtained from P
by letting every g-prime from P be counted k times. (If an original g-prime has multiplicity m,
then in the new system it will have multiplicity km.) The Beurling zeta function of kP is

ζkP(s) = ζP(s)k.

By standard methods using Perron’s formula,

NkP(x) = Ress=1

{ζP(s)k

s
xs

}
+ ∆P,k(x) = xPk−1(log x) + ∆P,k(x),
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where Pk−1(·) is a polynomial of degree k − 1 and ∆P,k(x) = O(xθ) for some θ < 1, depending
on k. Let αk denote the infimum of such θ. The generalised Dirichlet divisor problem is the
problem of determining αk. Also let βk denote the infimum of φ for which

∫ x

0
∆P,k(y)2 dy = O(x1+2φ).

Trivially, βk ≤ αk.
For P, it is known that

αk ≥ βk ≥ 1
2
− 1

2k
(2.1)

and it is conjectured that there is equality throughout (actually βk = 1
2− 1

2k for all k is equivalent
to the Lindelöf Hypothesis — see [6], Theorem 13.4). We use Theorem 1 to show that (2.1)
remains true for P satisfying (1.1). In fact we have the following two corollaries:

Corollary 2
Let P satisfy (1.1) for some β < 1

2 . Then for σ ∈ (β, 1
2 − 1

2k ),

∫ ∞

−∞

|ζP(σ + it)|2k

|σ + it|2 dt (2.2)

diverges. Further, if 1
2 − 1

2k is not the exceptional value in (1.2), then the integral also diverges
for σ = 1

2 − 1
2k .

Corollary 3
Let P satisfy (1.1) for some β < 1

2 . With αk and βk as above, αk ≥ βk ≥ max{β, 1
2 − 1

2k}.

3. Proofs
Proof of Theorem 1. If νP(σ′) < 1

2 − σ′ for some σ′ ∈ (β, 1
2) then, by continuity of νP(·),

νP(σ) < 1
2 − σ throughout some interval around σ′ and (1.2) holds for all such σ; in particular

for two such values. We shall show that this is impossible.

Suppose, for a contradiction, that (1.2) holds for σ = σ0, σ1 where β < σ0 < σ1 < 1
2 .

For N ≥ 1 let ζN,P(s) =
∑

n≤N n−s, where the sum ranges over n ∈ N . As was stated in [4]
(and shown in [3]), for σ < 1

2 there exist constants c1, c2 > 0 such that for R ≥ c1N ,

R∑

r=1

∫ 2r−1

0
|ζN,P(σ + it)|2 dt ≥ c2R

2N1−2σ. (3.1)

Also, writing s = σ + it, and following the arguments in [3], we have

ζN,P(s) =
1

2πi

∫ c+iT

c−iT

ζP(s + w)Nw

w
dw + O

( N c

T (c + σ − 1)

)
+ O

(
N1−σ

T

∑
N
2 < n < 2N

n ∈ N

1
|n−N |

)
,

(3.2)
for |t| < T , c > 1− σ and N 6∈ N . We shall put c = 1− σ + 1

log N and choose N in such a way
that (N − α,N + α) ∩ N = ∅. (As was shown in [4], this is possible for arbitrarily large N if
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0 < α < 1
4ρ .) With this choice of N , the final sum in (3.2) was shown to be O(

√
N). As such

(3.2) becomes

ζN,P(s) =
1

2πi

∫ c+iT

c−iT

ζP(s + w)Nw

w
dw + O

(N
3
2
−σ

T

)
. (3.3)

Now put σ = σ1 and push the contour in the integral to the left as far as <w = σ0 − σ1 < 0,
picking up the residues at w = 0 and w = 1− s (since |t| < T ).

The contribution along the horizontal line [σ0 − σ1 + iT, c + iT ] is, in modulus, less than

1
2πT

∫ c

σ0−σ1

Ny|ζP(σ1 + y + i(t + T ))| dy.

Using the uniform bound |ζP(σ + it)| = O(t
1−σ
1−β

+ε), this is at most a constant times

1
T

∫ 1−σ1

σ0−σ1

T
1−σ1−y

1−β
+ε

Ny dy +
1
T

∫ 1−σ1+ 1
log N

1−σ1

T εNy dy = O(T
β−σ0
1−β

+ε
Nσ0−σ1) + O(T ε−1N1−σ1).

(3.4)

Similarly on [σ0 − σ1 − iT, c− iT ].
The integral along <w = σ0 − σ1 is at most

Nσ0−σ1

2π

∫ T

−T

|ζP(σ0 + i(t + y))|√
(σ1 − σ0)2 + y2

dy = O
(
Nσ0−σ1

∫ 2T

1

|ζP(σ0 + iy)|
y

dy
)

= o(Nσ0−σ1T
1
2
−σ0), (3.5)

using3 the hypothetical bound
∫ T
0 |ζP(σ0 + it)|2dt = o(T 2−2σ0).

The residues at w = 0 and w = 1−s are, respectively, ζP(s) and ρN1−s/(1−s) = O(N1−σ1

|t|+1 ).
Putting (3.3), (3.4), and (3.5) together gives

ζN,P(σ1 + it) = ζP(σ1 + it) + O
(N1−σ1

|t|+ 1

)
+ O(N1−σ1T ε−1) + o(Nσ0−σ1T

1
2
−σ0) + O

(N
3
2
−σ1

T

)
,

for |t| < T . (Note that the first O-term in (3.4) is superfluous since β−σ0

1−β < 1
2 − σ0.) Hence,

using (a + b + c + d + e)2 ≤ 5(a2 + b2 + c2 + d2 + e2), we have

|ζN,P(σ1+it)|2 ≤ 5|ζP(σ1+it)|2+O
(N2−2σ1

t2 + 1

)
+O(N2−2σ1T 2ε−2)+o(N2σ0−2σ1T 1−2σ0)+O

(N3−2σ1

T 2

)
.

Now apply
∑R

r=1

∫ 2r−1
0 . . . dt to both sides to give (for 2R− 1 < T )

R∑

r=1

∫ 2r−1

0
|ζN,P(σ1 + it)|2 dt = O

( R∑

r=1

∫ 2r−1

0
|ζP(σ1 + it)|2 dt

)
+ O

( R∑

r=1

∫ 2r−1

0

N2−2σ1

(t + 1)2
dt

)

+ O(R2N2−2σ1T 2ε−2) + O
(R2N3−2σ1

T 2

)
+ o(R2N2(σ0−σ1)T 1−2σ0)

= o(R3−2σ1) + O(RN2−2σ1) + O(R2N2−2σ1T 2ε−2) + O
(R2N3−2σ1

T 2

)
+ o(R2N2(σ0−σ1)T 1−2σ0)

3If f ≥ 0 and
∫ T

0
f2 = o(T λ) (some λ > 1), then

∫ T

T/2

f(y)
y

dy ≤ 2
T

∫ T

0
f ≤ 2

T

√
T

∫ T

0
f2 = o(T

λ−1
2 ), and

∫ T

1

f(y)
y

dy = o(T
λ−1

2 ) follows.

4



using (1.2) for σ1. Let T = 2R. The left-hand side above is at least c2R
2N1−2σ1 by (3.1) if

R ≥ c1N . Dividing both sides through by R2N1−2σ1 gives

c2 ≤ o
(( R

N

)1−2σ1
)

+ O
(N

R

)
+ O(NR2ε−2) + O

(N2

R2

)
+ o

(( R

N

)1−2σ0
)

. (3.6)

Put R = KN where K ≥ c1 is a fixed, but arbitrary, constant. Letting N → ∞, the o-terms
both tend to zero as does the middle O-term. Hence

c2 ≤ A

K
+

B

K2

for some absolute constants A,B. But K can be made arbitrarily large, so this gives a contra-
diction.

For the final part, suppose (1.2) holds for σ = σ0 say. If
∫ T
0 |ζP(σ′ + it)|2dt = O(T 2−2σ′)

for some σ′ ∈ (β, 1
2) with σ′ 6= σ0, then (1.2) actually holds for all σ between σ0 and σ′. (This

follows from the Phragmen-Lindelöf Theorem for a strip (see [6], §7.8, with ε in the place of
C)). This was shown to be impossible, and hence T 2σ−2

∫ T
0 |ζP(σ′ + it)|2dt must be unbounded

for all σ 6= σ0.
¤

Now we apply Theorem 1 to find lower bounds in the Dirichlet divisor problem. Note that
Theorem 1 actually shows that given ε > 0,

∫ T

T/2
|ζP(σ + it)|2 dt = Ω(T 2−2σ−ε),

for if it was o(T 2−2σ−ε), then by telescoping it would follow that
∫ T
0 |ζP(σ+it)|2 dt = o(T 2−2σ−ε)

which is false.

Proofs of Corollaries 2 and 3. By Hölder’s inequality,

∫ T

T/2
|ζP(σ + it)|2k dt ≥ 2k−1

T k−1

(∫ T

T/2
|ζP(σ + it)|2 dt

)k

,

for every k ∈ N. By Theorem 1, given ε > 0,
∫ T
T/2 |ζP(σ + it)|2dt ≥ aT 2−2σ−ε for some a > 0

and some arbitrarily large T . Hence for such T ,
∫ T

T/2
|ζP(σ + it)|2k dt ≥ akT k(1−2σ)+1−εk.

It follows that ∫ T

T/2

|ζP(σ + it)|2k

|σ + it|2 dt ≥ a′T k(1−2σ)−1−εk

for some a′ > 0. But for σ < 1
2 − 1

2k , we have k(1− 2σ)− 1 > 0. Hence for ε sufficiently small,

k(1 − 2σ) − 1 − εk > 0 also, and so
∫ T
T/2

|ζP (σ+it)|2k

|σ+it|2 dt 6→ 0 as T → ∞, and Corollary 2 follows.
Of course, if 1

2 − 1
2k is not the exceptional value in Theorem 1, then we can take ε = 0 in the

above and the result also holds for σ = 1
2 − 1

2k .
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Let γk be the infimum of σ (with σ > β) for which
∫∞
−∞

|ζP (σ+it)|2k

|σ+it|2 dt converges. By Corollary
2, γk ≥ 1

2 − 1
2k . An identical argument as in the P = P case (see [6], Theorem 12.5) shows that

γk = βk. (The argument is simply based upon Parseval’s formula for Mellin transforms, which
in this case is the identity

1
2π

∫ ∞

−∞

|ζP(σ + it)|2k

|σ + it|2 dt =
∫ ∞

0

∆P,k(x)2

x1+2σ
dx

for σ in some interval (θ, 1) with θ < 1.) Hence βk ≥ 1
2 − 1

2k .
¤

4. On the line σ = 1
2

In this article, we have considered the mean-value along vertical lines <s = σ with σ < 1
2 . This

raises the question of what happens on the line σ = 1
2 . For P = P, we have

∫ T
0 |ζ(1

2 + it)|2dt ∼
T log T , so do we have

∫ T
0 |ζP(1

2 + it)|2dt = Ω(T log T ) in general? As in the σ < 1
2 case, we

relate the behaviour of the mean-square value at σ = 1
2 to the behaviour of the mean-square for

some σ = σ0 < 1
2 .

Theorem 4
Let P be a g-prime system for which (1.1) holds. If

∫ T
1
|ζP (σ+it)|

t dt = o((T log T )
1
2
−σ) for some

σ ∈ (β, 1
2), then

∫ T
0 |ζP(1

2 + it)|2dt = Ω(T log T ).

Note that the assumption is implied by
∫ T
1 |ζP(σ + it)|2dt = o(T 2−2σ(log T )1−2σ).

Sketch of Proof. We follow the proof of Theorem 1 as much as possible, this time taking σ1 = 1
2 .

Using the argument in [3] for σ = 1
2 , (3.1) becomes: there exist constants c1, c2 > 0 such that

for R ≥ c1N/ log N ,
R∑

r=1

∫ 2r−1

0

∣∣∣ζN,P
(1

2
+ it

)∣∣∣
2
dt ≥ c2R

2 log N. (4.1)

To see this, note that we have
∫ T

0

∣∣∣ζN,P
(1

2
+ it

)∣∣∣
2
dt = T

∑

n≤N

∗ 1
n

+ 2
∑

n≤N

1√
n

∑
m<n

Sm,n(T )√
m

,

where Sm,n(T ) = sin(T log(n/m))
log(n/m) . (Here m, n ∈ N and the ∗ indicates that any multiplicities must

be squared.) In any case, we have
∑∗

n≤N
1
n ≥

∑
n≤N

1
n ≥ k1 log N for some k1 > 0.4 For m ≤ n

2 ,
|Sm,n(T )| ≤ 1/ log 2, so this part of the double sum is O(

∑
n≤N

1√
n

∑
m≤n/2

1√
m

) = O(N). Thus,
for some positive constants k1, k2, independent of T and N ,

∫ T

0

∣∣∣ζN,P
(1

2
+ it

)∣∣∣
2
dt ≥ k1T log N + 2

∑

n≤N

1√
n

∑
n
2

<m<n

Sm,n(T )√
m

− k2N.

Putting T = 2r − 1 for r = 1, 2, . . . , R, and summing both sides gives, on noticing that∑R
r=1 sin((2r − 1) log n

m) = sin2(R log n/m)
sin(log n/m) ≥ 0 since 0 < log n/m < log 2,

R∑

r=1

∫ 2r−1

0

∣∣∣ζN,P
(1

2
+ it

)∣∣∣
2
dt ≥ k1R

2 log N − k2RN,

4This follows readily from NP(x) ∼ ρx.
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and (4.1) follows.
In (3.2), we need a better estimate for the final sum. Let M ∈ N. Then, with N such that

(N − α, N + α) ∩N = ∅,

∑
N
2 < n < 2N

n ∈ N

1
|n−N | =

M∑

m=1

∑

αN
m−1

M ≤|n−N |<αN
m
M

1
|n−N | + O(1)

≤ 1
α

M∑

m=1

1

N
m−1

M

(
N(N + αNm/M )−N(N − αNm/M )

)
+ O(1)

= O(N1/M ) + O(Nβ),

using (1.1). Since M is arbitrary, this is O(Nβ+ε) for every ε > 0 in any case. Thus (3.3)
becomes

ζN,P(s) =
1

2πi

∫ c+iT

c−iT

ζP(s + w)Nw

w
dw + O

(N
1
2
+β+ε

T

)
.

The analysis up to (3.5) remains the same (with σ0 = σ and σ1 = 1
2) but in (3.5) we use the

bound assumed in the statement to give o(Nσ− 1
2 (T log T )

1
2
−σ). The arguments following (3.5)

remain valid and we put T = 2R again, but this time we divide through by R2 log N . On
assuming

∫ T
0 |ζP(1

2 + it)|2dt = o(T log T ), (3.6) now becomes

c2 ≤ o
( log R

log N

)
+ O

( N

R log N

)
+ O

(NR2ε−2

log N

)
+ O

(N1+2β+2ε

R2

)
+ o

((R log R

N

)1−2σ 1
log N

)
.

Put R = KN/ log N where K ≥ c1 is a fixed, but arbitrary, constant. Letting N → ∞, all the
terms tend to zero except the first O-term. Hence

c2 ≤ A

K

for some absolute constant A. As K can be made arbitrarily large, this gives a contradiction.
Hence

∫ T
0 |ζP(1

2 + it)|2dt = Ω(T log T ).
¤
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