258 research outputs found

    Comparison of 3D scanned human models for off-body communications using motion capture

    Get PDF
    Body area networks are complex to analyze as there are several channel mechanisms occurring simultaneously, i.e. environmental multipath together with body motion and close coupling between worn antennas and human tissue. Electromagnetic (EM) simulation is an important tool since not all studies can be done on a real human. In order to gain insight into off-body communication involving a worn antenna, this paper uses a 3D animated model obtained from a 3D surface scanner and a motion capture system for full wave simulation of channels at 2.45 and 5.5GHz. To evaluate if the model can represent body area radio channels in general, a comparison of S21 of the simulated model with measurements from 5 other models of similar height to the main test subject is presented

    Passive wireless tags for tongue controlled assistive technology interfaces

    Get PDF
    Tongue control with low profile, passive mouth tags is demonstrated as a human–device interface by communicating values of tongue-tag separation over a wireless link. Confusion matrices are provided to demonstrate user accuracy in targeting by tongue position. Accuracy is found to increase dramatically after short training sequences with errors falling close to 1% in magnitude with zero missed targets. The rate at which users are able to learn accurate targeting with high accuracy indicates that this is an intuitive device to operate. The significance of the work is that innovative very unobtrusive, wireless tags can be used to provide intuitive human–computer interfaces based on low cost and disposable mouth mounted technology. With the development of an appropriate reading system, control of assistive devices such as computer mice or wheelchairs could be possible for tetraplegics and others who retain fine motor control capability of their tongues. The tags contain no battery and are intended to fit directly on the hard palate, detecting tongue position in the mouth with no need for tongue piercings

    Factor Market Rivalry, Factor Market Myopia, and Strategic Blind Spots: The Case Of The Truck Driver Labor Market

    Get PDF
    This article explores the relationships among factor market rivalry, factor market myopia, and strategic blind spots in the context of the labor market for truck drivers. Levitt (1960) developed the concept of market myopia to explain how managers often overlooked key competitors in product markets. Trucking managers might do the same thing in looking at competition for truck drivers. Factor market myopia and strategic blind spots help to explain how this happens, and how it becomes more severe in the context of factor market rivalry. In the trucking industry, factor market myopia and strategic blind spots may mean that managers overlook competition for workers who not only can drive trucks, but can also do many other jobs. We find that the labor market for truck drivers offers important lessons on the practical and theoretical ways in which these ideas interact

    Highly efficient Localisation utilising Weightless neural systems

    Get PDF
    Efficient localisation is a highly desirable property for an autonomous navigation system. Weightless neural networks offer a real-time approach to robotics applications by reducing hardware and software requirements for pattern recognition techniques. Such networks offer the potential for objects, structures, routes and locations to be easily identified and maps constructed from fused limited sensor data as information becomes available. We show that in the absence of concise and complex information, localisation can be obtained using simple algorithms from data with inherent uncertainties using a combination of Genetic Algorithm techniques applied to a Weightless Neural Architecture

    After Buddhism: Synopsis

    Full text link

    Multimodal assessment of the curing of agglomerated ores in the presence of chloride ions

    Get PDF
    Agglomeration and subsequent curing are widely used as pre-treatment for ore prior to heap leaching as it both improve the permeability of the heap and brings leaching solution into close contact with the ore, initializing the leaching reactions. Despite its widespread use there have been limited studies into the processes occurring within the agglomerates over the curing process. In this study both destructive and non-destructive imaging techniques are used to assess both the physical and chemical changes occurring within the agglomerates as they cure. The SEM/EDX is one of the most popular imaging techniques for mineral samples. It can only be carried out once for a given sample due to its destructive preparation method but provides detailed mineralogical information. A complementary tool is X-ray Microtomography (XMT), which is non-destructive and can be used to image the same object multiple times over the course of the experiment. Its main limitation, though, is that the acquired images are of X-ray attenuation values and need to be independently assigned to different mineral classifications based on, for instance, the corresponding SEM images. Combining the ability of SEM/EDX measurements to identify different mineral phases with the 3D time resolved XMT measurements can thus produce superior results to those achievable using either of the modalities on their own. In this study, we propose a methodology for quantifying the formation and depletion of mineral components of agglomerates. These methodologies will be demonstrated in ores agglomerated using a combination of sulphuric acid and ferric sulphate as well as in samples in which sodium chloride is added to the agglomeration recipe. The curing process was tracked beyond the typical time scales used industrially, highlighting that the presence of chloride ions makes a substantial difference to the chemical and structural evolution of the sample. Over this curing process most of the observed leaching occurs during the first 20 days in the presence of NaCl, while there is virtually no metal dissolution for the standard samples without NaCl. During curing the solution does not leave the agglomerates other than via evaporation. Thus, reprecipitation of metal containing mineral species was observed, especially near the agglomerate surfaces. In the presence of NaCl precipitated Cu-S-O-Cl complexes were observed suggesting that the chloride ions in solution are playing a key role in the leaching process. After 65 days of curing, the samples were water washed in order to remove soluble species, extracting 50% of the original sulphides from the agglomerates containing sodium chloride, but only 20% from the other agglomerates

    Inkjet Fabrication of Frame Dipole FSS

    Get PDF
    Digital fabrication techniques gives the possibility of producing elements with very thin and precise features which could allow the modification of UHF structures to reduce ink usage while still achieving similar performance. This paper investigates the case where dipole elements are modified into Frame Dipoles by removing areas where the surface current tends to be very low

    Ethics roundtable debate: should a sedated dying patient be wakened to say goodbye to family?

    Get PDF
    Intensivists have the potential to maintain vital signs almost indefinitely, but not necessarily the potential to make moribund patients whole. Current ethical and legal mandates push patient autonomy to the forefront of care plans. When patients are incapable of expressing their preferences, surrogates are given proxy. It is unclear how these preferences extend to the very brink of inevitable death. Some say that patients should have the opportunity and authority to direct their death spiral. Others say it would be impossible for them to do so because an inevitable death spiral cannot be effectively palliated. Humane principles dictate they be spared the unrelenting discomfort surrounding death. The present case examines such a patient and the issues surrounding a unique end-of-life decision

    Using A One-Class Compound Classifier To Detect In-Vehicle Network Attacks

    Get PDF
    The Controller Area Network (CAN) in vehicles provides serial communication between electronic control units that manage en- gine, transmission, steering and braking. Researchers have recently demonstrated the vulnerability of the network to cyber-attacks which can manipulate the operation of the vehicle and compromise its safety. Some proposals for CAN intrusion detection systems, that identify attacks by detecting packet anomalies, have drawn on one-class classi cation, whereby the system builds a decision surface based on a large number of normal instances. The one-class approach is discussed in this paper, together with initial results and observations from implementing a classi er new to this eld. The Compound Classier has been used in image processing and medical analysis, and holds advantages that could be relevant to CAN intrusion detection.<br/

    Conformal electronics for longitudinal bio-sensing in at-home assistive and rehabilitative devices

    Get PDF
    Wearable electronics are revolutionizing personalized and preventative healthcare by allowing the easy, unobtrusive, and long term monitoring of a range of body parameters. Conformal electronics which attach directly to the skin in a very robust and long term manner are envisioned as the next generation of highly portable miniaturized computing devices, beyond wearables. In this paper we overview the state-of-the-art in conformal electronics created using silver nanoparticle inkjet printed techniques for home assistive and rehabilitative devices. The barriers to wider adaption, particularly the challenges of high performance antenna design when placed close to the body, are discussed in detail
    • 

    corecore