638 research outputs found

    Dual mechanism model for fluid particle breakup in the entire turbulent spectrum

    Get PDF
    This work provides an in-depth understanding of different breakup mechanisms for fluid particles in turbulent flows. All the disruptive and cohesive stresses are considered for the entire turbulent energy spectrum and their contributions to the breakup are evaluated. A new modeling framework is presented that bridges across turbulent subranges. The model entails different mechanisms for breakup by abandoning the classical limitation of inertial models. The predictions are validated with experiments encompassing both breakup regimes for droplets stabilized by internal viscosity and interfacial tension down to the micrometer length scale, which covers both the inertial and dissipation subranges. The model performance ensures the reliability of the framework, which involves different mechanisms. It retains the breakup rate for inertial models, improves the predictions for the transition region from inertia to dissipation, and bridges seamlessly to Kolmogorov-sized droplets

    Concurrent factors determine toughening in the hydraulic fracture of poroelastic composites

    Get PDF
    Brittle materials fail catastrophically. In consequence of their limited flaw-tolerance, failure occurs by localized fracture and is typically a dynamic process. Recently, experiments on epithelial cell monolayers have revealed that this scenario can be significantly modified when the material susceptible to cracking is adhered to a hydrogel substrate. Thanks to the hydraulic coupling between the brittle layer and the poroelastic substrate, such a composite can develop a toughening mechanism that relies on the simultaneous growth of multiple cracks. Here, we study this remarkable behaviour by means of a detailed model, and explore how the material and loading parameters concur in determining the macroscopic toughness of the system. By extending a previous study, our results show that rapid loading conveys material toughness by promoting distributed cracking. Moreover, our theoretical findings may suggest innovative architectures of flaw-insensitive materials with higher toughness. ArXI

    Efficient Mixing at low Reynolds numbers using polymer additives

    Full text link
    Mixing in fluids is a rapidly developing field of fluid mechanics \cite{Sreen,Shr,War}, being an important industrial and environmental problem. The mixing of liquids at low Reynolds numbers is usually quite weak in simple flows, and it requires special devices to be efficient. Recently, the problem of mixing was solved analytically for a simple case of random flow, known as the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Here we demonstrate experimentally that very viscous liquids at low Reynolds number, ReRe. Here we show that very viscous liquids containing a small amount of high molecular weight polymers can be mixed quite efficiently at very low Reynolds numbers, for a simple flow in a curved channel. A polymer concentration of only 0.001% suffices. The presence of the polymers leads to an elastic instability \cite{LMS} and to irregular flow \cite{Ours}, with velocity spectra corresponding to the Batchelor regime \cite{Bat,Kraich,Fal,Sig,Fouxon}. Our detailed observations of the mixing in this regime enable us to confirm sevearl important theoretical predictions: the probability distributions of the concentration exhibit exponential tails \cite{Fal,Fouxon}, moments of the distribution decay exponentially along the flow \cite{Fouxon}, and the spatial correlation function of concentration decays logarithmically.Comment: 11 pages, 5 figure

    Monolithic simulation of convection-coupled phase-change - verification and reproducibility

    Full text link
    Phase interfaces in melting and solidification processes are strongly affected by the presence of convection in the liquid. One way of modeling their transient evolution is to couple an incompressible flow model to an energy balance in enthalpy formulation. Two strong nonlinearities arise, which account for the viscosity variation between phases and the latent heat of fusion at the phase interface. The resulting coupled system of PDE's can be solved by a single-domain semi-phase-field, variable viscosity, finite element method with monolithic system coupling and global Newton linearization. A robust computational model for realistic phase-change regimes furthermore requires a flexible implementation based on sophisticated mesh adaptivity. In this article, we present first steps towards implementing such a computational model into a simulation tool which we call Phaseflow. Phaseflow utilizes the finite element software FEniCS, which includes a dual-weighted residual method for goal-oriented adaptive mesh refinement. Phaseflow is an open-source, dimension-independent implementation that, upon an appropriate parameter choice, reduces to classical benchmark situations including the lid-driven cavity and the Stefan problem. We present and discuss numerical results for these, an octadecane PCM convection-coupled melting benchmark, and a preliminary 3D convection-coupled melting example, demonstrating the flexible implementation. Though being preliminary, the latter is, to our knowledge, the first published 3D result for this method. In our work, we especially emphasize reproducibility and provide an easy-to-use portable software container using Docker.Comment: 20 pages, 8 figure

    Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model

    Full text link
    Two robots stand at the origin of the infinite line and are tasked with searching collaboratively for an exit at an unknown location on the line. They can travel at maximum speed bb and can change speed or direction at any time. The two robots can communicate with each other at any distance and at any time. The task is completed when the last robot arrives at the exit and evacuates. We study time-energy tradeoffs for the above evacuation problem. The evacuation time is the time it takes the last robot to reach the exit. The energy it takes for a robot to travel a distance xx at speed ss is measured as xs2xs^2. The total and makespan evacuation energies are respectively the sum and maximum of the energy consumption of the two robots while executing the evacuation algorithm. Assuming that the maximum speed is bb, and the evacuation time is at most cdcd, where dd is the distance of the exit from the origin, we study the problem of minimizing the total energy consumption of the robots. We prove that the problem is solvable only for bc3bc \geq 3. For the case bc=3bc=3, we give an optimal algorithm, and give upper bounds on the energy for the case bc>3bc>3. We also consider the problem of minimizing the evacuation time when the available energy is bounded by Δ\Delta. Surprisingly, when Δ\Delta is a constant, independent of the distance dd of the exit from the origin, we prove that evacuation is possible in time O(d3/2logd)O(d^{3/2}\log d), and this is optimal up to a logarithmic factor. When Δ\Delta is linear in dd, we give upper bounds on the evacuation time.Comment: This is the full version of the paper with the same title which will appear in the proceedings of the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO'19) L'Aquila, Italy during July 1-4, 201

    The numerical control of the motion of a passive particle in a point vortex flow

    Get PDF
    This work reports numerical explorations in the advection of one passive tracer by point vortices living in the unbounded plane. The main objective is to find the energy-optimal displacement of one passive particle (point vortex with zero circulation) surrounded by N point vortices. The direct formulation of the corresponding control problems is presented for the case of N = 1, N = 2, N = 3 and N = 4 vortices. The restrictions are due to (i) the ordinary differential equations that govern the displacement of the passive particle around the point vortices, (ii) the available time T to go from the initial position z0 to the final destination zf; and (iii) the maximum absolute value umax that is imposed on the control variables. The resulting optimization problems are solved numerically. The numerical results show the existence of nearly/quasi-optimal control.info:eu-repo/semantics/publishedVersio

    Forces between clustered stereocilia minimize friction in the ear on a subnanometre scale

    Full text link
    The detection of sound begins when energy derived from acoustic stimuli deflects the hair bundles atop hair cells. As hair bundles move, the viscous friction between stereocilia and the surrounding liquid poses a fundamental challenge to the ear's high sensitivity and sharp frequency selectivity. Part of the solution to this problem lies in the active process that uses energy for frequency-selective sound amplification. Here we demonstrate that a complementary part involves the fluid-structure interaction between the liquid within the hair bundle and the stereocilia. Using force measurement on a dynamically scaled model, finite-element analysis, analytical estimation of hydrodynamic forces, stochastic simulation and high-resolution interferometric measurement of hair bundles, we characterize the origin and magnitude of the forces between individual stereocilia during small hair-bundle deflections. We find that the close apposition of stereocilia effectively immobilizes the liquid between them, which reduces the drag and suppresses the relative squeezing but not the sliding mode of stereociliary motion. The obliquely oriented tip links couple the mechanotransduction channels to this least dissipative coherent mode, whereas the elastic horizontal top connectors stabilize the structure, further reducing the drag. As measured from the distortion products associated with channel gating at physiological stimulation amplitudes of tens of nanometres, the balance of forces in a hair bundle permits a relative mode of motion between adjacent stereocilia that encompasses only a fraction of a nanometre. A combination of high-resolution experiments and detailed numerical modelling of fluid-structure interactions reveals the physical principles behind the basic structural features of hair bundles and shows quantitatively how these organelles are adapted to the needs of sensitive mechanotransduction.Comment: 21 pages, including 3 figures. For supplementary information, please see the online version of the article at http://www.nature.com/natur

    Fluid Particle Accelerations in Fully Developed Turbulence

    Full text link
    The motion of fluid particles as they are pushed along erratic trajectories by fluctuating pressure gradients is fundamental to transport and mixing in turbulence. It is essential in cloud formation and atmospheric transport, processes in stirred chemical reactors and combustion systems, and in the industrial production of nanoparticles. The perspective of particle trajectories has been used successfully to describe mixing and transport in turbulence, but issues of fundamental importance remain unresolved. One such issue is the Heisenberg-Yaglom prediction of fluid particle accelerations, based on the 1941 scaling theory of Kolmogorov (K41). Here we report acceleration measurements using a detector adapted from high-energy physics to track particles in a laboratory water flow at Reynolds numbers up to 63,000. We find that universal K41 scaling of the acceleration variance is attained at high Reynolds numbers. Our data show strong intermittency---particles are observed with accelerations of up to 1,500 times the acceleration of gravity (40 times the root mean square value). Finally, we find that accelerations manifest the anisotropy of the large scale flow at all Reynolds numbers studied.Comment: 7 pages, 4 figure
    corecore