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Abstract Brittle materials fail catastrophically. In con-

sequence of their limited flaw-tolerance, failure occurs

by localized fracture and is typically a dynamic pro-

cess. Recently, experiments on epithelial cell monolay-

ers have revealed that this scenario can be significantly

modified when the material susceptible to cracking is

adhered to a hydrogel substrate. Thanks to the hy-

draulic coupling between the brittle layer and the poroe-

lastic substrate, such a composite can develop a tough-

ening mechanism that relies on the simultaneous growth

of multiple cracks. Here, we study this remarkable be-

haviour by means of a detailed model, and explore how

the material and loading parameters concur in deter-

mining the macroscopic toughness of the system. By

extending a previous study, our results show that rapid

loading conveys material toughness by promoting dis-

tributed cracking. Moreover, our theoretical findings

may suggest innovative architectures of flaw-insensitive

materials with higher toughness.

Keywords Hydraulic fracture · Toughening · Multiple

cracking · Brittle layer · Hydrogel · Cohesive zone

1 Introduction

Nature has adopted diverse, remarkable strategies to

enhance the flaw-tolerance of biological tissues, such as

bone and tooth [7]. As a result, they can sustain rela-

tively high levels of strain while maintaining their in-

tegrity. Epithelium is another example of such tissues.
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Despite the intrinsic brittle behavior of the cell mono-

layer [9], this can display a high fracture toughness,

as it has recently been shown experimentally [3]. In a

previous work [11] we have demonstrated that this be-

havior is determined by the hydraulic coupling between

the epithelial layer and the extracellular matrix, which

can be regarded as a poroelastic, hydrogel-like mate-

rial. Specifically, because fracture requires flow into the

crack to fill its volume, the kinetics of solvent migra-

tion within the hydrogel controls the velocity of crack

propagation, so that decreased permeability promotes

multiple-cracking at cell-cell junctions. Then, this dis-

tributed cracking mechanism maximizes the external

work performed on the system before failure (which is

a measure of toughness), since cell-cell separation re-

quires a significant amount of work and is accompanied

by dissipation due to solvent flow.

The just described behavior sharply contrasts with

that of brittle materials, which are highly flaw-sensitive

and typically fail catastrophically, by localized fracture

[1]. For instance, the equilibrium of two edge cracks

with the same length in an elastic brittle layer under

tensile load is unstable, so that any perturbation will

cause only one of the cracks to propagate dynamically

[12]. In general, since toughening of soft materials typ-

ically relies on energy dissipation [14], studying the en-

ergetics of crack propagation [13] is crucial to under-

stand the interplay of different physics involved in frac-

ture phenomena and for the implementation of tough-

ening strategies in synthetic materials [8]. Therefore,

we here reconsider the problem studied numerically in

[11], where a brittle layer containing two pre-cracks and

bonded to a hydrogel substrate is subject to a remote

strain. In particular, we analyze the relative influence

of the different dissipative mechanisms on the macro-

scopic toughness of the system. Moreover, we focus on



2 Alessandro Lucantonio, Giovanni Noselli

the effect of the strain rate on the transition from dis-

tributed to localized cracking.

The paper is organized as follows. We first establish

the model accounting for the poroelasticity of the hy-

drogel substrate, the elasticity of the brittle layer and

its hydraulic fracture. Then, the weak formulation of

the model is presented, which is suitable for its imple-

mentation into a finite element code. Numerical results

are shown and discussed concerning the dissipations for

both the regimes of distributed and localized fracture.

2 Model for the hydraulic fracture of a brittle

layer bonded to a hydrogel substrate

In this section, we derive the governing equations for the

nonlinear model of hydraulically driven crack propaga-

tion in a brittle layer bonded to a hydrogel substrate.

Both the brittle solid and the hydrogel are modelled as

layers of finite thickness and infinite length. To simplify

notation, the derivation is presented for the case of a

single crack. Then, in the following section, the numer-

ical model is extended to account for two competing

cracks.

2.1 Notation and kinematics

We introduce an orthonormal basis {ei}, i = {1, 2, 3},
for the three-dimensional Euclidean space E . We de-

note by Bg
t ⊂ E and Be

t ⊂ E the current configura-

tions at time t of the hydrogel and the brittle layer,

respectively; the corresponding reference configurations

are indicated by dropping the subscript t. Further, we

introduce two Cartesian coordinate systems {Xi} and

{xi}, for the reference and the current configuration

of the system, respectively. A material point X of the

reference solid domain B = Bg ∪ Be with coordinates

Xi is mapped into a spatial point x with coordinates

xi = fi(Xj , t) in the current configuration Bt (Fig. 1),

where fi are the coordinate representations of the mo-

tion of the solid domain. We will use the symbol F for

the deformation gradient, and write J = detF for its

determinant and F? = JF−T for its cofactor. We as-

sume plane strain conditions, such that all the quanti-

ties do not depend on X3 and thus xα = fα(X1, X2, t),

α = {1, 2}, whereas x3 = f3(X3, t) = X3. We take all

of the three-dimensional domains to be of unit-depth,

so that, in the ensuing derivation, volume integrals and

area integrals over the cross-section corresponding to

the cut plane X3 = x3 = 0 coincide.

The brittle layer contains an initially closed pre-

crack with length ao, whose faces belong to the ref-

erential segments J±, being J−t and J +
t their current

counterparts. For the reference configuration L of the

longitudinal crack axis, we choose the segment aligned

with the X2-axis: L = {X ∈ E |X1 = X3 = 0, X2 ∈
[0, h] = H}, where h is the thickness of the brittle layer.

We assume that the axis Lt remains straight and ver-

tical upon deformation, and that the crack undergoes

a plane motion symmetric with respect to such axis.

Thus, the axis of the crack stretches by the amount

λ(X2, t) = ∂f c
2/∂X2(X2, t) to follow the vertical mo-

tion f c
2(X2, t) = limX1→0± f2(X1, X2, t), with X2 ∈ H.

We define the material description of the crack open-

ing δ(X2, t) as

δ(X2, t) = Jf1(0, X2, t)K = 2f c
1(X2, t) , (1)

where the symbol J·K denotes the jump operator, whereas

f c
1(X2, t) = limX1→0+ f1(X1, X2, t) and the second equal-

ity follows from symmetry. By composing δ with the in-

verse of the deformation mapping, we obtain the crack

opening as a function of the spatial location along Lt:
δs(x2, t) = δ(X2, t) ◦ (f c

2)−1(x2, t). The velocity of the

crack faces may be readily computed as

v±c (x2, t) = ±1

2
δ̇s(x2, t)e1 + w(x2, t)e2 , (2)

where w(x2, t) = ḟ c
2(X2, t) ◦ (f c

2)−1(x2, t) is its vertical

component. Here, a superposed dot denotes the mate-

rial time derivative (at X2 fixed), so that

δ̇s(x2, t) = δ̇(X2, t) ◦ (f c
2)−1(x2, t) =

=
∂δs(x2, t)

∂t
+ w(x2, t)

∂δs(x2, t)

∂x2
.

(3)

We call Bf
t ⊂ E the fluid domain, that is, the spa-

tial volume with longitudinal axis Lt enclosed by the

crack faces and filled with solvent. Finally, we denote

by v(x, t), x ∈ Bf
t, the spatial velocity field of the sol-

vent within the crack.
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Fig. 1: Sketch of the reference configuration of the sys-

tem (left) and of the current configuration of the edge

crack (right) in the cut plane X3 = x3 = 0.
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2.2 Solvent flow within the crack

In this section, we establish a reduced one-dimensional

model for the solvent flow within the crack. Specifically,

we derive a set of equations, defined over the axis L,

by localizing the integral balance laws for the fluid ex-

pressed in terms of resultant quantities over horizontal

cross-sections. A related model was introduced in [5]

without accounting for stretching along the axis. We

consider the steady flow of an incompressible, viscous

fluid under the assumption that the motion is quasi-

1D, i.e. the velocity field v is independent of x3 and is

dominated by the longitudinal component v2 = v · e2.

We define a control volume Vt ⊂ Bf
t, enclosed by the

cross-sections that are located at two fixed positions x̄2

and x̄′2 along Lt, and the crack faces J±t .

2.2.1 Conservation of solvent mass

The equation of conservation of mass for the incom-

pressible fluid in Vt reads∫
∂Vt

v · n da = 0 , (4)

where n is the outward unit normal to ∂Vt. On the

crack faces this is given by the following relation

n±c =
1

‖nc‖

(
±e1 −

1

2

∂δs
∂x2

e2

)
, (5)

with ‖nc‖ =
√

1 + 1/4(∂δs/∂x2)2. Notice that the area

element along the crack faces in Eq. (4) transforms

according to da = ‖nc‖dx2dx3. Using eqs. (2) and

Eq. (5) the volume flux contributions over parts of J±t
in Eq. (4) may be evaluated as∫ x̄′2

x̄2

(
δ̇s − w

∂δs
∂x2

)
dx2 , (6)

while the net flux through the cross-sections delimiting

Vt is

Q(x̄′2, t)−Q(x̄2, t) =

∫ x̄′2

x̄2

∂Q

∂x2
dx2 , (7)

with

Q(x2, t) =

∫ δs(x2,t)/2

−δs(x2,t)/2

v2(x1, x2, t) dx1 (8)

the solvent volume flux per unit depth. By summing

these two contributions, Eq. (4) may be recast as∫ x̄′2

x̄2

(
δ̇s − w

∂δs
∂x2

+
∂Q

∂x2

)
dx2 = 0 . (9)

To express this equation in the reference configuration

L, we first observe that

∂w(x2, t)

∂x2
=

(
1

λ(X2, t)

∂λ(X2, t)

∂t

)
◦ (f c

2)−1(x2, t), (10)

∂δs(x2, t)

∂x2
=

(
1

λ(X2, t)

∂δ(X2, t)

∂X2

)
◦ (f c

2)−1(x2, t). (11)

Then, upon exploiting Eq. (3) and localizing, we obtain

∂ (δλ)

∂t
+

∂q

∂X2
= 0 , (12)

where q(X2, t) = qs(x2, t) ◦ f c
2(X2, t) is the material

description of the solvent flux

qs(x2, t) = Q(x2, t)− w(x2, t)δs(x2, t) (13)

relative to the material particles on the crack faces.

2.2.2 Balance of forces

Upon neglecting inertia, the balance of forces for the

solvent within the crack along the longitudinal axis of

Vt reads

e2 ·
∫
∂Vt

Tfn da = 0 . (14)

As a constitutive law for the stress tensor we take the

representation for an incompressible, Newtonian vis-

cous fluid, such that

Tf = −psI + 2η sym(gradv) , (15)

with ps and η the pressure and the viscosity of the sol-

vent, respectively. Following lubrication theory [2], we

assume that: i) the velocity profile is parabolic along

the cross-sections, i.e.

v2(x1, x2, t) = 4(w − vmax
2 )

(
x1

δs

)2

+ vmax
2 , (16)

where vmax
2 = (3Q/δs − w)/2; ii) the pressure ps(x2, t)

is uniform over each cross-section; iii) the components

of the velocity gradient along x2 are negligible. Under

these hypotheses, the traction on the crack faces is

t±f = Tfn
±
c ≈

≈ −psn
±
c − 6η

qs

δ2
s

(e1 ⊗ e2 + e2 ⊗ e1)n±c ,
(17)

where in the last equality we have used the represen-

tation (16) evaluated at x2 = ±δs/2. With this, the

contribution to the integral in (14) extending over the

crack faces may be computed as

− 12

∫ x̄′2

x̄2

qs

δ2
s

dx2 +

∫ x̄′2

x̄2

ps
∂δs
∂x2

dx2 . (18)
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Moreover, the force resultant over the cross-sections at

x̄2 and x̄′2 is

−ps(x2, t)δs(x2, t)
∣∣∣x̄′2
x̄2

= −
∫ x̄′2

x̄2

∂(psδs)

∂x2
dx2 . (19)

Finally, by expressing the sum of eqs. (18)-(19) in the

reference crack axis L and by localizing we obtain

q = − δ3

12ηλ

∂pf

∂X2
, (20)

where pf(X2, t) = ps(x2, t) ◦ f c
2(X2, t).

2.3 Cohesive zone model

To model crack propagation, we employ a cohesive zone

approach [6]. We take the cohesive tractions s±c per

unit reference area acting on the crack faces J± to be

orthogonal to the reference longitudinal axis L of the

crack, and such that their magnitude is a function of

the crack opening:

s±c = ∓σ(δ) e1 . (21)

We choose a bilinear traction-separation law for σ(δ),

such that

σ(δ) = (1− d)
σo

δo
δ , (22)

where σo is the cohesive strength (attained for δ = δo)

and d(X2, t) ∈ [0, 1] is the damage. We prescribe the

following evolution law for the damage:

d =
δc(δm − δo)

δm(δc − δo)
, (23)

where δm(X2, t) is the maximum value attained by the

opening during crack evolution and δc is the crack open-

ing at failure (d = 1). The fracture energy Γ is related

to the parameters of the cohesive zone model through

the equation Γ = σoδc/2.

In addition to the cohesive tractions, the crack faces

J±t are subject to the pressure and to the shear stress

exerted by the fluid, which contributes to the traction

with the term −t±f , see Eq. (17). The corresponding

reference traction is

s±f =±pfF
?e1+6η

q

δ2
[(F?e1 ·e1)e2+(F?e1 ·e2)e1], (24)

such that the total reference traction acting on the

crack faces is given by s± = s±f + s±c .

2.4 Elasticity of the brittle layer

By assuming inertia negligible, the balances of forces

and moments in Be read

divS = 0 , skwSFT = 0 , (25)

where S denotes the first Piola-Kirchhoff stress tensor.

We model the brittle layer as an impermeable, elas-

tic solid characterized by the compressible neo-Hookean

free energy density

ψ(F) =
Ge

2
(F · F− 2 log J − 3) +

Λ

2
(log J)2, (26)

where Ge and Λ � Ge are the Lamé moduli. The cor-

responding first Piola-Kirchhoff stress is given by

S =
∂ψ

∂F
= Ge

(
F− 1

J
F?
)

+ Λ
log J

J
F? . (27)

Notice that, because of Eq. (27) and the plane strain

hypothesis, Se1 · e3 = Se2 · e3 = Se3 · e1 = Se3 · e2 = 0

and the out-of-plane balance equation in (25)1 is triv-

ially satisfied. Hence, the balance of forces and moments

may be formulated in terms of the plane components of

S only.

2.5 Poroelasticity of the hydrogel layer

In the following, we briefly summarize the non-linear

swelling theory for hydrogels introduced in [10]. The

state of the hydrogel is described by the motion f of

the polymer network and the solvent concentration c

per unit reference volume. The chemical potential µ

of the solvent within the hydrogel quantifies the energy

carried by the solvent and represents the driving force of

solvent migration. The corresponding solvent molar flux

h characterizes the relative motion of the solvent with

respect to the polymer matrix. Consistently with the

plane strain hypothesis, we assume that solvent migra-

tion takes place in the plane e1-e2, so that c(X1, X2, t),

µ(X1, X2, t), and h · e3 = 0.

The polymer matrix and the solvent are considered

to be separately incompressible; hence, the change in

volume of the hydrogel is related to the change in sol-

vent concentration:

J = 1 +Ω(c− co) , (28)

where Ω is the solvent molar volume and co = (Jo −
1)/(ΩJo) is the solvent concentration per unit reference

volume associated to the initial free swelling from the

dry configuration to Bg. Here, Jo is the volume ratio

between the reference and the dry configuration. The



Concurrent factors determine toughening in the hydraulic fracture of poroelastic composites 5

constraint of Eq. (28) is enforced through the Lagrange

multiplier p.

Swelling processes are governed by the equations of

balance of forces and moments, which are the same as

those for the brittle layer, see Eqs. (25), and by the

balance of solvent mass in Bg

ċ = −divh , (29)

subject to the initial condition c(X1, X2, 0) = co.

As concerns the constitutive equations, we prescribe

the following Flory-Rehner representation for the free

energy density of the hydrogel [4,10]

ψ(F, c) = ψe(F) + ψm(c) , (30)

where

ψe(F) =
Gd

2Jo
(J1/3

o F · F− 3) (31)

and

ψm(c) = RTc
[
log

(
ΩJoc

1 +ΩJoc

)
+ χ

1

1 +ΩJoc

]
(32)

are the neo-Hookean elastic energy and the Flory-Huggins

free energy of mixing, respectively. Here, Gd is the shear

modulus of the dry polymer, R is the universal gas

constant, T is the absolute temperature of the environ-

ment, and χ is the polymer-solvent mixing parameter.

For the consistency with thermodynamical principles,

the corresponding constitutive equations are given by:

S =
∂ψe

∂F
− pF? , (33)

µ =
∂ψm

∂c
+Ωp , (34)

h = − cD
RT
∇µ , (35)

where D is the diffusivity of the solvent within the hy-

drogel. In the reference configuration Bg, the hydro-

gel is in equilibrium with the external solvent whose

chemical potential is µo. Specifically, we consider an ex-

ternal solvent in equilibrium with its vapor, such that

µo = 0 J/mol. Thus, the reference configuration is iden-

tified by the conditions F = I, µ = µo and S = 0, which

together determine the swelling ratio Jo as the solution

of following equation

log

(
1− 1

Jo

)
+

1

Jo
+

χ

J2
o

+
GdΩ

RT
1

J
1/3
o

= 0 . (36)

2.6 Boundary and interface conditions

In the numerical implementation, we refer to a com-

putational domain which is limited along the e1-axis

by vertical boundaries of normal m = ±e1. In order

for the computational model to appropriately approxi-

mate the theoretical setting, we choose its length to be

sufficiently larger than the thickness of the composite.

Starting from the equilibrium state of free swelling

with µ = µo, the system is subject to a homogeneous,

horizontal strain of constant rate ε̇. Correspondingly,

the vertical component u · e1 of the displacement field

u(X1, X2, t) is prescribed along the vertical boundaries

∂uB of the composite, while the vertical component

u · e2 of the displacement field is constrained at the

bottom boundary of the hydrogel only. In order to ease

crack opening, continuity of the displacements is re-

laxed at the interface between the brittle layer and the

hydrogel along small segments near the cracks. The re-

maining parts of the boundary ∂B are traction-free.

As regards the boundary conditions for solvent mi-

gration, we assume zero solvent flux on ∂Bg. For short

times, no significant exchange of solvent with the exte-

rior can take place. At the crack inlet, we impose the

continuity of solvent pressure: µ = Ωpf , where µ/Ω is

the pressure within the hydrogel. At the crack tip, we

impose zero solvent flux: q = 0.

2.7 Power balance

As mentioned in the introduction, we are interested in

analyzing the breakdown of dissipative contributions

upon the toughness enhancement of the system. To this

aim, we write the total power balance for the brittle

layer–hydrogel composite as

Pt = Ė + Pcoh + Pv − Ps (37)

where

Ė =
d

dt

∫
B
ψ , (38)

Pt =

∫
∂uB

Sm · u̇ , (39)

Pcoh =

∫
J+

σ(δ)δ̇ =

∫
J−

σ(δ)δ̇ , (40)

Pv = 2η

∫
Vt
‖sym∇v‖2 ≈ 12η

∫
L
λ
q2

δ3
, (41)

Ps = −
∫
Bg

h · ∇µ (42)

are the total free energy of the system, the mechanical

power expended by the applied tractions, the power ex-

pended by the cohesive tractions in fracture processes,
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the power dissipated by transport of the fluid within the

cracks, and the power dissipated by solvent transport

within the hydrogel, respectively. Notice that there is

no contribution associated to solvent transport across

the boundary of the system because we have assumed

the hydrogel to be impermeable for short times.

2.8 Weak form of the governing equations

In order to solve the problem set in the previous para-

graphs by means of the finite element method, we recast

the governing equations (12), (25)1, (28), and (29) in

weak form. The continuity of the solvent pressure at the

crack inlet (subscript ‘in’) is enforced through the La-

grange multiplier g corresponding to the (concentrated)

solvent mass flux per unit length. Then, the weak for-

mulation of the problem reads: find pf , u, c, p and g

such that the following equations∫
L

(
− ∂

∂t
(δλ)p̃f + q

∂p̃f

∂X2

)
+Ω(g p̃f)in = 0 , (43)∫

B
S · ∇ũ =

∫
J+

s+ · ũ+ +

∫
J−

s− · ũ− , (44)∫
Bg

(J − 1−Ωc+Ωco) p̃ = 0 , (45)∫
Bg

(−ċµ̃+ h · ∇µ̃)− (g µ̃)in = 0 , (46)

(µ(c, p)−Ωpf)in g̃ = 0 , (47)

hold for arbitrary test fields (indicated with a super-

posed tilde) compatible with the Dirichlet conditions.

The weak form of the governing equations is comple-

mented by Eq. (20) and by the constitutive relations

(33)-(35). This, and the corresponding boundary con-

ditions, have been implemented into the finite element

software COMSOL Multiphysics v5.2. Specifically, quadratic

shape functions were used for all the unknown fields, ex-

cept for the pressure field p, which was discretized using

linear shape functions to get a reliable approximation

of the volume constraint. The implicit, variable-order

(from 1 to 5), adaptive step-size BDF solver was used

for time-stepping. A quasi-Newton algorithm was em-

ployed to solve iteratively the non-linear algebraic sys-

tem resulting from the finite element discretization at

each time step. The direct solver MUMPS was chosen

for the solution of the linearized system at each itera-

tion. The mesh consisted of about 2×104 triangular el-

ements corresponding to about 105 degrees of freedom,

and was made symmetric with respect to the vertical

symmetry axis of the computational domain to avoid

introducing any numerical bias in the distribution of

solvent flux between the cracks. Local mesh refinement

along the crack paths was performed to ensure that

the cohesive zones were discretized with at least 20 el-

ements. Notice that the faces J + and J− are modeled

as distinct (but overlapping) segments in the numerical

model where the tractions s± are prescribed.

3 Numerical results

We apply the just described model to the analysis of

the ideal case of a brittle layer containing two edge pre-

cracks of initial length ao and separation s. To break

symmetry, we introduce a 10% difference between the

toughnesses ΓR and ΓL of the right and left crack, re-

spectively.

Dimensional analysis dictates that any relevant quan-

tity, such as the total dissipated energy, has to depend

on the following set of dimensionless groups: h/ao, h/s,

h/H, Ge/Λ, Gd/J
1/3
o Ge, GdΩ/RT , ΓR/ΓL, χ, µo/RT ,

|ε̇|s2/D, τ , Geao/ΓL, ΓLao/ηD. Here, H is the thick-

ness of the hydrogel substrate, whereas τ = |ε̇|t is a

dimensionless measure of time.

For the computational study, we set the values of

part of these dimensionless groups as reported in Ta-

ble 1. The first three are geometrical ratios, while the

following three are related to the elastic moduli of the

brittle layer and the hydrogel. We recall from [11] that

crack propagation under compression (tension) requires

the ratio 3Gd/4J
1/3
o Ge between the moduli of the hy-

drogel and the brittle layer to be higher (lower) than

1/2. In compression, for instance, this condition allows

the solvent pressure within the cracks to overcome the

compressive stresses due to the remotely applied strain.

Thus, we set Gd/J
1/3
o Ge = 0.38, GdΩ/RT = 6× 10−5

to study cracking in tension, and Gd/J
1/3
o Ge = 3.82,

GdΩ/RT = 4× 10−4 for the simulations of cracking in

compression. Given χ, GdΩ/RT and µo/RT , the initial

swelling ratio Jo is computed from Eq. (36). Eventu-

ally, by allowing the remaining parameters to vary, we

Table 1: Values of the dimensionless groups used in the

numerical simulations.

Parameter Value

h/ao 10
h/s 5/3
h/H 0.04
Ge/Λ 0.02
ΓR/ΓL 0.9
χ 0.46
µo/RT 0
Geao/ΓL 6.7
ΓLao/ηD 2.5
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Fig. 2: Snapshots of the system at failure as obtained from numerical simulations, for tensile (a),(b) and compres-

sive (c),(d) strains. The transition from localized (a),(c) to distributed (b),(d) fracture corresponds to increasing

values of the dimensionless group Π = |ε̇|s2/D, here obtained by varying the strain rate. Contours represent the

longitudinal stress σ̃x = SFTe1 · e1/JGe in the brittle layer and the solvent pressure p̃g = µJ
1/3
o /(ΩGd) within

the hydrogel, while εf is the value of the applied strain at failure. The scale bar is 5 µm, whereas the arrows in

the hydrogel represent the solvent flux.

regard a dimensionless, physical quantity as a function

of Π = |ε̇|s2/D and τ .

We now focus on the significance of the dimension-

less group of Π upon the fracture behavior of the sys-

tem. In a previous study [11], we have demonstrated

that decreased diffusivity conveys toughening by pro-

moting multiple-cracking. Here, in light of dimensional

analysis, we deduce that the transition from localized

to distributed fracture is actually controlled by the di-

mensionless group Π. The results in Fig. 2, where we

report snapshots of the system at failure, confirm that

such a transition is associated to an increase in the

value of Π, both in tension and compression. Further

evidence is provided in Figs. 3(a),(d), where the rela-

tive length difference ∆ã = (aR − aL)/ao between the

cracks sharply grows for Π = 2× 10−7, as rapid, single

crack propagation occurs. Therefore, multiple-cracking

may be obtained by either an increase in strain rate

or separation between the cracks, or by a decrease in

diffusivity of the solvent within the hydrogel.

The just described behavior may be rationalized as

follows. In a brittle solid, the mechanism of crack tip

shielding is responsible for localized, dynamic fracture.

Any offset between the crack tips implies a progres-

sive decrease (increase) in the energy release rate of the

lagging (leading) crack [12]. In the presence of the hy-

drogel, crack advance always requires solvent transport

and is thereby controlled by its diffusivity. Hence, con-

tinued loading that is rapid with respect to the kinetics

of solvent transport can favour distributed cracking by

sustaining the driving force of both fractures.

Multiple-cracking results in an enhancement of the

macroscopic toughness of the system. To quantify such

an enhancement, we report in Figs. 3(b),(e) the dimen-

sionless mechanical work W̃t = Wt/(Geh + GdH) per-

formed on the system as computed by time-integration

of Eq. (39). Notice that, an increase of two orders of

magnitude in the strain rate produces more than a

three-fold increase in the work at failure, both in tension

and in compression. This trend is motivated by the in-

crease of the dissipation Ẽd = Ed/(ΓL +ΓR)ao that ac-

companies distributed cracking, see Figs. 3(c),(f). Here,

Ed collects the time-integrals of the powers dissipated

by fracture, Eq. (40), and solvent transport, Eq. (42), as

the energy dissipated by viscous flow within the cracks

is comparably negligible. Interestingly, we notice that

dissipation due to solvent transport mainly contributes

to such an increase in Ẽd. As a consequence, the relative

contribution of the work of fracture to Ẽd decreases in

the transition from localized to distributed cracking.
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Fig. 3: Dynamics and energetics of crack propagation in tension (a)-(c) and compression (d)-(f), for |ε̇| = 0.0001 s−1

(red, Π = 2× 10−7) and |ε̇| = 0.01 s−1 (green, Π = 2× 10−5). The plots show the relative crack length difference

(a),(d), the external work performed on the system (b),(e) and the total dissipated energy (c),(f) as a function of

time until failure. The dash-dotted line in (c),(f) represents the dissipated energy associated to solvent transport.

4 Conclusions

Motivated by recent experimental results on the frac-

ture of epithelial cell monolayers adhered to an hy-

drogel substrate, a model has been developed that al-

lows for the analysis of hydraulically driven cracking

of this system. We have shown that such a composite

can develop a toughening mechanism that relies on the

multiple-cracking of the brittle phase. In particular, we

have demonstrated that the transition from localized

to distributed cracking is determined by either a de-

crease in solvent diffusivity or an increase in loading

rate. A detailed energy analysis has quantified the dissi-

pative processes associated with multiple-cracking. Fu-

ture work will investigate upon the possibility of imple-

menting this concept in the engineering of flaw-tolerant,

biomimetic materials.

Acknowledgements The authors acknowledge the support
of the European Research Council (AdG-340685 MicroMotil-
ity) and of National Group of Mathematical Physics (GNFM-
INdAM) through the initiative “Progetto Giovani”. The au-
thors also thank prof. Robert M. McMeeking for useful dis-
cussions on the subject.

Compliance with ethical standards The authors declare

that they have no conflict of interest.

References

1. Anderson, T.L.: Fracture Mechanics: Fundamentals and
Applications. CRC Press (2005)

2. Batchelor, G.K.: An Introduction to Fluid Dynamics.
Cambridge University Press, Cambridge (1967)

3. Casares, L., Vincent, R., Zalvidea, D., Campillo, N.,
Navajas, D., Arroyo, M., Trepat, X.: Hydraulic fracture
during epithelial stretching. Nature Materials 14(3),
343–351 (2015). DOI 10.1038/nmat4206. URL http:

//dx.doi.org/10.1038/nmat4206

4. Doi, M.: Gel dynamics. J. Phys. Soc. Jpn. 78(5), 052,001
(2009). DOI 10.1143/JPSJ.78.052001. URL http://

journals.jps.jp/doi/abs/10.1143/JPSJ.78.052001

5. Formaggia, L., Veneziani, A.: Reduced and multiscale
models for the human cardiovascular system. Tech.
Rep. 21, MOX-Politecnico di Milano (2003)

6. Freund, L.B.: Dynamic Fracture Mechanics. Cambridge
University Press, Cambridge (1998)

7. Gao, H., Ji, B., Jäger, I.L., Arzt, E., Fratzl, P.: Materials
become insensitive to flaws at nanoscale: Lessons from
nature. Proc. Natl. Acad. Sci. USA 100(10), 5597–5600
(2003). DOI 10.1073/pnas.0631609100. URL http://www.

pnas.org/content/100/10/5597

8. Gong, J.P.: Materials both tough and soft. Sci-
ence 344(6180), 161–162 (2014). DOI 10.1126/science.
1252389. URL http://science.sciencemag.org/content/

344/6180/161

9. Harris, A.R., Peter, L., Bellis, J., Baum, B., Kabla, A.J.,
Charras, G.T.: Characterizing the mechanics of cultured
cell monolayers. Proc. Natl. Acad. Sci. USA 109(41),
16,449–16,454 (2012). DOI 10.1073/pnas.1213301109.
URL http://www.pnas.org/content/109/41/16449

http://dx.doi.org/10.1038/nmat4206
http://dx.doi.org/10.1038/nmat4206
http://journals.jps.jp/doi/abs/10.1143/JPSJ.78.052001
http://journals.jps.jp/doi/abs/10.1143/JPSJ.78.052001
http://www.pnas.org/content/100/10/5597
http://www.pnas.org/content/100/10/5597
http://science.sciencemag.org/content/344/6180/161
http://science.sciencemag.org/content/344/6180/161
http://www.pnas.org/content/109/41/16449


Concurrent factors determine toughening in the hydraulic fracture of poroelastic composites 9

10. Lucantonio, A., Nardinocchi, P., Teresi, L.: Transient
analysis of swelling-induced large deformations in poly-
mer gels. Journal of the Mechanics and Physics of
Solids 61(1), 205–218 (2013). DOI 10.1016/j.jmps.2012.
07.010. URL http://linkinghub.elsevier.com/retrieve/

pii/S0022509612001548

11. Lucantonio, A., Noselli, G., Trepat, X., DeSimone, A.,
Arroyo, M.: Hydraulic fracture and toughening of a brit-
tle layer bonded to a hydrogel. Physical Review Let-
ters 115, 188,105 (2015). DOI 10.1103/PhysRevLett.
115.188105. URL http://link.aps.org/doi/10.1103/

PhysRevLett.115.188105

12. Noselli, G., Deshpande, V.S., Fleck, N.A.: An anal-
ysis of competing toughening mechanisms in lay-
ered and particulate solids. International Journal
of Fracture 183(2), 241–258 (2013). DOI 10.1007/
s10704-013-9890-8. URL http://link.springer.com/

article/10.1007/s10704-013-9890-8

13. Noselli, G., Lucantonio, A., McMeeking, R.M., DeSi-
mone, A.: Poroelastic toughening in polymer gels: A the-
oretical and numerical study. Journal of the Mechanics
and Physics of Solids 94, 33–46 (2016). DOI 10.1016/j.
jmps.2016.04.017. URL http://www.sciencedirect.com/

science/article/pii/S0022509616301818

14. Zhao, X.: Multi-scale multi-mechanism design of tough
hydrogels: building dissipation into stretchy networks.
Soft Matter 10(5), 672–687 (2014). DOI 10.
1039/C3SM52272E. URL http://dx.doi.org/10.1039/

C3SM52272E

http://linkinghub.elsevier.com/retrieve/pii/S0022509612001548
http://linkinghub.elsevier.com/retrieve/pii/S0022509612001548
http://link.aps.org/doi/10.1103/PhysRevLett.115.188105
http://link.aps.org/doi/10.1103/PhysRevLett.115.188105
http://link.springer.com/article/10.1007/s10704-013-9890-8
http://link.springer.com/article/10.1007/s10704-013-9890-8
http://www.sciencedirect.com/science/article/pii/S0022509616301818
http://www.sciencedirect.com/science/article/pii/S0022509616301818
http://dx.doi.org/10.1039/C3SM52272E
http://dx.doi.org/10.1039/C3SM52272E

