94 research outputs found
A tool for predicting heating uniformity in industrial radio frequency processing
Radio frequency energy is utilised for heating in a wide range of applications, particularly in the food industry. A major challenge of RF processing is non-uniform heating in loads of variable and angular geometry, leading to reduced quality and product damage. In the study, the specific effects of geometry on the heating profiles of a range of geometrically variable loads in an industrial scale RF system are analysed, and the understanding used to derive a general tool to predict heating uniformity. Potato was selected as a test material for experimental work; dielectric properties were measured using a 44mm coaxial probe. Analysis of simulated and experimental surface temperature profiles and simulated power uniformity indices indicates that the presence of vertices and edges on angular particles, and their proximity to faces perpendicular to the RF electrodes increases localised heating; faces parallel to the electrodes heated less than those faces perpendicular to them. Comparison of the same geometrical shape in different orientations indicates that overall power absorption uniformity can be better even when localised heating of edges is greater. It is suggested, for the first time, that the rotation of angular shapes within a parallel plate electric field can improve heating uniformity, and that this can be achieved through the design of bespoke electrode systems. A Euler characteristic based shape factor is proposed, again for the first time, that can predict heating uniformity for solid, dielectrically homogenous shapes. This provides industry with a tool to quickly determine the feasibility for uniform RF heating of different three dimensional shapes based on geometry alone. This provides a screening method for food technologists developing new products, allowing rapid assessment of potential heating uniformity and reducing the need for early stage specialist computational modelling
Understanding selectivity in radio frequency and microwave sorting of porphyry copper ores
Continuous high-throughput microwave treatment followed by infrared thermal imaging (MW-IR) has previously been shown to provide attractive separations for a number of porphyry copper ores, leading to rejection of a large proportion of barren fragments from ore-grade material or concentration of copper values from waste-grade material. However, the efficacy of the sorting process is reduced by the presence of hydrated clays and pyrite. Literature measurements have shown differences in the conductivity of pyrite and copper sulphides such as chalcopyrite at radio frequencies. In this work the potential of using radio frequency (RF) heating to exploit these differences and achieve improved selectivity between copper and iron sulphides, is investigated. For the first time a novel bulk materials handling and presentation method that facilitates even heating of angular ore fragments in parallel plate RF systems is discussed. The fragment-by-fragment thermal response of five ore samples under equivalent pilot MW-IR and RF-IR processing conditions is evaluated, showing that there is an increase in selectivity in the heating of hydrated clay minerals in RF compared to microwave. It is suggested, again for the first time, that selectivity in the microwave processing of ores containing semi-conducting minerals is due predominantly to magnetic absorption (induction heating) caused by eddy currents associated with the magnetic field component of electromagnetic energy. In radio frequency processing, where electric field is the dominant component, heating of semi-conducting minerals is limited by the electric field screening effect. This effect is demonstrated using synthetic fragments. Thermal response profiles of synthetic fragments show that approximately 2.5 times the mass of sulphide minerals to hydrated clay minerals would result in an equal temperature increase for microwave heated fragments in which the microwave-heating minerals are evenly disseminated throughout the matrix. This understanding provides the foundations for development of models incorporating different thermal responses for individual heated phases, alongside other textural and treatment variables, that can be used to predict how close to intrinsic sortability ores will perform in MW-IR and RF-IR without the need for extensive processing trials
Towards large scale microwave treatment of ores: Part 2 - Metallurgical testing
A pilot scale microwave treatment system capable of treating 10-150t/h of material at 10-200kW was designed, constructed and commissioned in order to understand the engineering challenges of microwave-induced fracture of ores at scale and generate large metallurgical test samples of material treated at approximately 0.3-3kWh/t. It was demonstrated that exposing more of the ore to a region of high power density by improving treatment homogeneity with two single mode applicators in series yielded equivalent or better metallurgical performance with up to half the power and one third the energy requirement of that used with a single applicator. Comminution testing indicated that A*b values may be reduced by up to 7-14% and that the Bond Ball Mill Work Index may be reduced by up to 3-9% depending on the ore type under investigation. Liberation analysis of the microwave-treated ore indicated that equivalent liberation may be achievable for a grind size approximately 40-70µm coarser than untreated ore, which is in agreement with laboratory scale investigations reported in the literature at similar or higher doses. Flow sheet simulations further indicated that reduced ore competency following microwave treatment could potentially yield up to a 9% reduction in specific comminution energy (ECS) at a nominal plant grind of P₈₀190µm, or up to 24% reduction at a grind of P₈₀290µm, for a microwave energy input of 0.7-1.3kWh/t. Throughput could also be increased by up to approximately 30% depending on grind size, ore type and equipment constraints. To date, approximately 900t of material has been processed through the pilot plant, approximately 300t of which was under microwave power. Metallurgical testing has demonstrated that comminution and liberation benefits are achievable at doses lower than that previously reported in the literature, which allow high throughputs to be sustained with low installed power requirements providing a pathway to further scale-up of microwave treatment of ores
Towards large scale microwave treatment of ores: Part 1 – Basis of design, construction and commissioning
Despite over thirty years of work, microwave pre-treatment processes for beneficiation of ores have not progressed much further than laboratory testing. In this paper we present a scaleable pilot-scale system for the microwave treatment of ores capable of operating at throughputs of up to 150tph. This has been achieved by confining the electric field produced from two 100kW generators operating at 896MHz in a gravity fed vertical flow system using circular choking structures yielding power densities of at least 6x108 W/m3 in the heated mineral phases. Measured S11 scattering parameters for a quartzite ore (-3.69±0.4dB) in the as-built applicator correlated well with the simulation (-3.25dB), thereby validating our design approach. We then show that by fully integrating the applicator with a materials handling system based on the concept of mass flow, we achieve a reliable, continuous process. The system was used to treat a range of porphyry copper ores
Understanding microwave induced sorting of porphyry copper ores
Global demand for minerals and metals is increasing. It has been established that the impact of mining and mineral processing operations must be reduced to sustainably meet the demands of a low grade future. Successful incorporation of ore sorting in flow sheets has the potential to improve energy efficiency by rejecting non-economic material before grinding. Microwave heating combined with infra-red temperature measurement has been shown to distinguish low and high grade ore fragments from each other. In this work, experimentally validated 2-D finite difference models of a theoretical two phase ore, representing typical fragment textures and grades, are constructed. Microwave heating is applied at economically viable energy inputs and the resultant surface thermal profiles analysed up to 2 minutes after microwave heating. It is shown that the size and location of grains can dramatically alter surface temperature rise at short thermal measurement delay times and that the range of temperatures increases with increasing fragment grade. For the first time, it is suggested that increasing the delay time between microwave heating and thermal measurement can reduce the variation seen for fragments of the same grade but different textures, improving overall differentiation between high and low grade fragments
Microwave-enhanced heap leaching of porphyry copper ores: Part 1 – The role of mineralogy in microwave-induced fracture networking measured by X-ray computed tomography
Previous studies have shown that the magnitude of microwave-induced fractures is dependent on ore mineralogy and texture. Those studies were based on quantitative measurements of ore competency through destructive testing or one-dimensional non-destructive ultrasonic testing, and thus did not provide detailed information about the damage (e.g., 3D fracture mapping). In this study, the role of mineralogy and texture was investigated using the X-ray Computed Tomography (X-ray CT) imaging technique to provide 3D visualization and quantification of microwave-induced fractures in four porphyry copper ores of varying lithology. The extent of mineral exposure resulting from microwave treatment was determined by comparing the Euclidean Distance Map (EDM) of pre- and post-treated scanning results, which can be used to inform leaching performance and thus select suitable ore types for microwave-assisted leaching. Ores that exhibited a greater increase in flaw thickness (up to 0.8 mm) and a higher mineral exposure (shortening the leaching pathways by up to 45 %) due to microwave treatment tended to have similar mineralogical features. The features included a high modal abundance of good microwave heaters (∼7–14 %), a coarse grain size or micro-veins of these heaters (average D50 = 300–500 µm), and contained a significant proportion of stiffer microwave heaters (e.g., pyrite) (5–11 %). Given the right mineralogy and texture, this study indicates that microwave ore pre-treatment is a potential technology that can significantly increase mineral exposure (reducing leaching pathways) by inducing macro-fractures, which can be exploited to improve metal extraction without further size reduction (e.g., in heap leaching). Alternatively, if the coarsely treated fragments are crushed, the internal mineral will be exposed due to preferential breakage along induced fracture paths, potentially promoting metal leach extraction
Current status of turbulent dynamo theory: From large-scale to small-scale dynamos
Several recent advances in turbulent dynamo theory are reviewed. High
resolution simulations of small-scale and large-scale dynamo action in periodic
domains are compared with each other and contrasted with similar results at low
magnetic Prandtl numbers. It is argued that all the different cases show
similarities at intermediate length scales. On the other hand, in the presence
of helicity of the turbulence, power develops on large scales, which is not
present in non-helical small-scale turbulent dynamos. At small length scales,
differences occur in connection with the dissipation cutoff scales associated
with the respective value of the magnetic Prandtl number. These differences are
found to be independent of whether or not there is large-scale dynamo action.
However, large-scale dynamos in homogeneous systems are shown to suffer from
resistive slow-down even at intermediate length scales. The results from
simulations are connected to mean field theory and its applications. Recent
work on helicity fluxes to alleviate large-scale dynamo quenching, shear
dynamos, nonlocal effects and magnetic structures from strong density
stratification are highlighted. Several insights which arise from analytic
considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue
"Magnetism in the Universe" (ed. A. Balogh
Microwave-enhanced heap leaching of porphyry copper ores: Part 2 – Leaching studies and flowsheet development
The effect of ore mineralogy and texture on the extent of microwave-induced fractures and leaching performance has been investigated using porphyry copper sulphide ores with differing lithologies to identify potential ore candidates for microwave-assisted heap leaching. The extent of ore pre-damage due to microwave treatment was determined (qualitatively and quantitatively) using non-destructive tests (X-ray computed tomography (X-ray CT) and ultrasonic pulse velocity (UPV)). Pairs of sawn ore fragments (microwave treated versus untreated) from each ore type were leached in a strongly acidic solution, and results were compared to assess the influence of microwave treatment on leaching performance. Thereafter, several conceptual flowsheet possibilities incorporating microwave ore pre-treatment in heap leaching were proposed. Ore types with amenable mineralogy and texture for microwave treatment (e.g., coarse mineralization and high abundance of microwave-absorbent phases including pyrite) exhibited greater induced damage (up to 39% UPV reduction), faster leaching kinetics (by a factor of 2–8), and higher copper recovery enhancement (up to 28 % absolute). Moreover, the X-ray CT imaging clearly revealed that microwave ore pre-treatment generates new fractures or exacerbates the naturally occurring fractures (containing sulphide mineralisation), with many of these fractures occurring in the vicinity of sulphide mineralisation, which resulted in a mineral dissolution improvement by a factor of 4–10 % (absolute). Flowsheet development indicated the possibility of treating the whole ore or a portion of the feed with amenable texture. The authors conclude that the potential benefits of microwave ore pre-treatment in heap leaching flowsheets are twofold, namely simplification of comminution requirements (including energy reduction) and improving leaching performance (dissolution kinetics and ultimate metal recovery). On-going work is aimed at defining the details of the potential improvements and the economic impact
Magnetic Field Amplification in Galaxy Clusters and its Simulation
We review the present theoretical and numerical understanding of magnetic
field amplification in cosmic large-scale structure, on length scales of galaxy
clusters and beyond. Structure formation drives compression and turbulence,
which amplify tiny magnetic seed fields to the microGauss values that are
observed in the intracluster medium. This process is intimately connected to
the properties of turbulence and the microphysics of the intra-cluster medium.
Additional roles are played by merger induced shocks that sweep through the
intra-cluster medium and motions induced by sloshing cool cores. The accurate
simulation of magnetic field amplification in clusters still poses a serious
challenge for simulations of cosmological structure formation. We review the
current literature on cosmological simulations that include magnetic fields and
outline theoretical as well as numerical challenges.Comment: 60 pages, 19 Figure
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) ows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several special applications in heliophysics and astrophysics, assessing triumphs, challenges,and future directions
- …
