81 research outputs found

    Deriving the ideal ore texture for microwave treatment of metalliferous ores

    Get PDF
    High power density microwave treatments on metalliferous ores have historically been shown to reduce ore competency prior to beneficiation at economically feasible energy inputs. However, the relationship between mineralogical textural features and the extent of the microwave-induced fracturing had previously been limited to qualitative descriptions or simplistic two-phase numerical models, which could not account for the complex mineral assemblages in real ores. In this paper, mineralogy, grain size, dissemination, textural consistency and mineral associations were determined for 13 commercially exploited nickel, copper and lead-zinc ores using a Mineral Liberation Analyser (MLA). The ores were subjected to high power density microwave treatments at up to 25kW in a single mode cavity with microwave energy inputs of approximately 0.5-10kWh/t, and the subsequent reductions in ore competency were measured by the Point Load Test. The ores that demonstrated the greatest reductions in strength typically contained between approximately 2%wt to 20%wt of highly microwave-absorbing minerals, with a native grain size d50 greater than approximately 500µm, constrained by hard matrix minerals such as quartz and feldspar. Texturally consistent ores with a high proportion of amenable textures also demonstrated the highest average reductions in strength. These findings support the qualitative descriptions and numerical modelling results available in the literature and provide a baseline for selecting likely candidate ores for microwave treatments in the future

    Increasing the grind size for effective liberation and flotation of a porphyry copper ore by microwave treatment

    Get PDF
    In this paper, mineralogy, grain size, dissemination, textural consistency and mineral associations were determined for a commercially exploited porphyry copper ore using a Mineral Liberation Analyser (MLA). The ore was subjected to high power density microwave treatments in a single mode cavity at 15 kW and approximately 2 kW h/t. The untreated and microwave-treated samples were subsequently milled to two grind sizes near the nominal plant grind size and a size-by-liberation analysis performed. The analysis revealed that equivalent liberation could be obtained at a grind size approximately 50–60 μm coarser than the nominal plant grind due to the microwave treatment. Flotation testing indicated that an increase in copper recovery of approximately 1% could be achieved, or that a grind size increase of approximately 30 μm may potentially yield equivalent copper recovery due to the microwave-enhanced liberation observed. However, statistical analyses demonstrated that it is difficult to attain confidence in recovery increases of approximately 1% even when conducting batch flotation tests in triplicate. The ore under investigation had previously been shown to produce only modest average reductions in strength (∼8%) under similar microwave treatment conditions due to a prevalence of many unfavourable textures. However, the preferential association of copper minerals with a hard matrix mineral (quartz) and a hard microwave-absorbent mineral (pyrite) resulted in a significant change in liberation behaviour

    Understanding selectivity in radio frequency and microwave sorting of porphyry copper ores

    Get PDF
    Continuous high-throughput microwave treatment followed by infrared thermal imaging (MW-IR) has previously been shown to provide attractive separations for a number of porphyry copper ores, leading to rejection of a large proportion of barren fragments from ore-grade material or concentration of copper values from waste-grade material. However, the efficacy of the sorting process is reduced by the presence of hydrated clays and pyrite. Literature measurements have shown differences in the conductivity of pyrite and copper sulphides such as chalcopyrite at radio frequencies. In this work the potential of using radio frequency (RF) heating to exploit these differences and achieve improved selectivity between copper and iron sulphides, is investigated. For the first time a novel bulk materials handling and presentation method that facilitates even heating of angular ore fragments in parallel plate RF systems is discussed. The fragment-by-fragment thermal response of five ore samples under equivalent pilot MW-IR and RF-IR processing conditions is evaluated, showing that there is an increase in selectivity in the heating of hydrated clay minerals in RF compared to microwave. It is suggested, again for the first time, that selectivity in the microwave processing of ores containing semi-conducting minerals is due predominantly to magnetic absorption (induction heating) caused by eddy currents associated with the magnetic field component of electromagnetic energy. In radio frequency processing, where electric field is the dominant component, heating of semi-conducting minerals is limited by the electric field screening effect. This effect is demonstrated using synthetic fragments. Thermal response profiles of synthetic fragments show that approximately 2.5 times the mass of sulphide minerals to hydrated clay minerals would result in an equal temperature increase for microwave heated fragments in which the microwave-heating minerals are evenly disseminated throughout the matrix. This understanding provides the foundations for development of models incorporating different thermal responses for individual heated phases, alongside other textural and treatment variables, that can be used to predict how close to intrinsic sortability ores will perform in MW-IR and RF-IR without the need for extensive processing trials

    A tool for predicting heating uniformity in industrial radio frequency processing

    Get PDF
    Radio frequency energy is utilised for heating in a wide range of applications, particularly in the food industry. A major challenge of RF processing is non-uniform heating in loads of variable and angular geometry, leading to reduced quality and product damage. In the study, the specific effects of geometry on the heating profiles of a range of geometrically variable loads in an industrial scale RF system are analysed, and the understanding used to derive a general tool to predict heating uniformity. Potato was selected as a test material for experimental work; dielectric properties were measured using a 44mm coaxial probe. Analysis of simulated and experimental surface temperature profiles and simulated power uniformity indices indicates that the presence of vertices and edges on angular particles, and their proximity to faces perpendicular to the RF electrodes increases localised heating; faces parallel to the electrodes heated less than those faces perpendicular to them. Comparison of the same geometrical shape in different orientations indicates that overall power absorption uniformity can be better even when localised heating of edges is greater. It is suggested, for the first time, that the rotation of angular shapes within a parallel plate electric field can improve heating uniformity, and that this can be achieved through the design of bespoke electrode systems. A Euler characteristic based shape factor is proposed, again for the first time, that can predict heating uniformity for solid, dielectrically homogenous shapes. This provides industry with a tool to quickly determine the feasibility for uniform RF heating of different three dimensional shapes based on geometry alone. This provides a screening method for food technologists developing new products, allowing rapid assessment of potential heating uniformity and reducing the need for early stage specialist computational modelling

    Towards large scale microwave treatment of ores: Part 1 – Basis of design, construction and commissioning

    Get PDF
    Despite over thirty years of work, microwave pre-treatment processes for beneficiation of ores have not progressed much further than laboratory testing. In this paper we present a scaleable pilot-scale system for the microwave treatment of ores capable of operating at throughputs of up to 150tph. This has been achieved by confining the electric field produced from two 100kW generators operating at 896MHz in a gravity fed vertical flow system using circular choking structures yielding power densities of at least 6x108 W/m3 in the heated mineral phases. Measured S11 scattering parameters for a quartzite ore (-3.69±0.4dB) in the as-built applicator correlated well with the simulation (-3.25dB), thereby validating our design approach. We then show that by fully integrating the applicator with a materials handling system based on the concept of mass flow, we achieve a reliable, continuous process. The system was used to treat a range of porphyry copper ores

    Towards large scale microwave treatment of ores: Part 2 - Metallurgical testing

    Get PDF
    A pilot scale microwave treatment system capable of treating 10-150t/h of material at 10-200kW was designed, constructed and commissioned in order to understand the engineering challenges of microwave-induced fracture of ores at scale and generate large metallurgical test samples of material treated at approximately 0.3-3kWh/t. It was demonstrated that exposing more of the ore to a region of high power density by improving treatment homogeneity with two single mode applicators in series yielded equivalent or better metallurgical performance with up to half the power and one third the energy requirement of that used with a single applicator. Comminution testing indicated that A*b values may be reduced by up to 7-14% and that the Bond Ball Mill Work Index may be reduced by up to 3-9% depending on the ore type under investigation. Liberation analysis of the microwave-treated ore indicated that equivalent liberation may be achievable for a grind size approximately 40-70µm coarser than untreated ore, which is in agreement with laboratory scale investigations reported in the literature at similar or higher doses. Flow sheet simulations further indicated that reduced ore competency following microwave treatment could potentially yield up to a 9% reduction in specific comminution energy (ECS) at a nominal plant grind of P₈₀190µm, or up to 24% reduction at a grind of P₈₀290µm, for a microwave energy input of 0.7-1.3kWh/t. Throughput could also be increased by up to approximately 30% depending on grind size, ore type and equipment constraints. To date, approximately 900t of material has been processed through the pilot plant, approximately 300t of which was under microwave power. Metallurgical testing has demonstrated that comminution and liberation benefits are achievable at doses lower than that previously reported in the literature, which allow high throughputs to be sustained with low installed power requirements providing a pathway to further scale-up of microwave treatment of ores

    Pilot scale microwave sorting of porphyry copper ores: Part 2: pilot plant trials

    Get PDF
    An experimental pilot plant was constructed, commissioned and operated at a major porphyry copper mine to understand the challenges of microwave infrared thermal (MW-IRT) sorting at scale and to compare batch laboratory performance with pilot-scale continuous sortability performance. A method was developed to define the 95% confidence intervals on pilot plant operating windows from experiments on 50 to 150 fragments performed in a laboratory based replica of the pilot scale microwave treatment system. It appeared that the laboratory testing methodology predicted the sortability of the ores fairly well. For the 11 ore types and three size classes (-76.2+50.8mm, -50.8+25.4mm and -25.4+12.7mm) tested over 233 pilot plant experiments, approximately 42% of the better optimised pilot plant runs predicted copper recovery to within ±5% copper recovery and approximately 84% of the runs to within ±10%. These figures were improved to approximately 50% predicted to within ±5% and approximately 90% to within ±10% if the -25.4+12.7mm size class was omitted. It was demonstrated that laboratory testing better predicted pilot plant sorting performance and provided a narrower operating window when a larger sample size (>50 fragments) was considered due to improved representivity. It is, therefore, fully expected that better predictions would result from larger laboratory sample sizes than those tested during any future testing campaigns. To date, approximately 15,500 tonnes of ore has been processed through the pilot-scale test facility, generating significant engineering know-how and demonstrating MW-IRT sorting at a scale in the order of that required by the mining industry

    Understanding microwave induced sorting of porphyry copper ores

    Get PDF
    Global demand for minerals and metals is increasing. It has been established that the impact of mining and mineral processing operations must be reduced to sustainably meet the demands of a low grade future. Successful incorporation of ore sorting in flow sheets has the potential to improve energy efficiency by rejecting non-economic material before grinding. Microwave heating combined with infra-red temperature measurement has been shown to distinguish low and high grade ore fragments from each other. In this work, experimentally validated 2-D finite difference models of a theoretical two phase ore, representing typical fragment textures and grades, are constructed. Microwave heating is applied at economically viable energy inputs and the resultant surface thermal profiles analysed up to 2 minutes after microwave heating. It is shown that the size and location of grains can dramatically alter surface temperature rise at short thermal measurement delay times and that the range of temperatures increases with increasing fragment grade. For the first time, it is suggested that increasing the delay time between microwave heating and thermal measurement can reduce the variation seen for fragments of the same grade but different textures, improving overall differentiation between high and low grade fragments

    Pilot scale microwave sorting of porphyry copper ores: Part 1: laboratory investigations

    Get PDF
    Microwave treatment followed by infrared thermal imaging (MW–IRT) has been proposed as a potential excitation-discrimination technique to facilitate sorting of porphyry copper ores. A continuous, high throughput (up to 100t/h), belt–based microwave cavity operating at up to 100kW has been designed to interface directly with commercially available sorters at industrially relevant scales. In this paper, the fragment-by-fragment thermal response of 16 porphyry copper ore samples following microwave treatment in the bespoke system is evaluated to elucidate key performance criteria and identify likely candidate ores for microwave sorting. Microwave treatment energy dose was found to be the driving force behind the ultimate average temperature fragments experience, with other process variables (e.g. belt speed, power, belt mass loading, thermal equilibration time) having little effect on sortability performance. While fragment mineralogical texture and ore textural heterogeneity were shown to influence the average temperature rise of the fragment surface presented to the thermal camera, in most cases this variability did not adversely affect sortability performance. An abundance of microwave-heating gangue minerals (e.g. iron sulphides, iron oxides and hydrated clays) was shown to be the dominant source of deviation from intrinsic sortability. However, low average moisture content and co-mineralisation of copper and iron sulphides (or bulk sulphide sorting) was found to mitigate the deviation and provide better sortability performance. An attractive separation could be proposed for many of the ores tested, either to remove a large proportion of barren fragments from ore-grade material or concentrate a large proportion of copper values from waste-grade material

    Current status of turbulent dynamo theory: From large-scale to small-scale dynamos

    Full text link
    Several recent advances in turbulent dynamo theory are reviewed. High resolution simulations of small-scale and large-scale dynamo action in periodic domains are compared with each other and contrasted with similar results at low magnetic Prandtl numbers. It is argued that all the different cases show similarities at intermediate length scales. On the other hand, in the presence of helicity of the turbulence, power develops on large scales, which is not present in non-helical small-scale turbulent dynamos. At small length scales, differences occur in connection with the dissipation cutoff scales associated with the respective value of the magnetic Prandtl number. These differences are found to be independent of whether or not there is large-scale dynamo action. However, large-scale dynamos in homogeneous systems are shown to suffer from resistive slow-down even at intermediate length scales. The results from simulations are connected to mean field theory and its applications. Recent work on helicity fluxes to alleviate large-scale dynamo quenching, shear dynamos, nonlocal effects and magnetic structures from strong density stratification are highlighted. Several insights which arise from analytic considerations of small-scale dynamos are discussed.Comment: 36 pages, 11 figures, Spa. Sci. Rev., submitted to the special issue "Magnetism in the Universe" (ed. A. Balogh
    • …
    corecore