24 research outputs found

    Computational Design of Molecular Motors and Excited-State Studies of Organic Chromophores

    No full text
    This thesis presents computational quantum chemical studies of molecular motors and excited electronic states of organic chromophores. The first and major part of the thesis is concerned with the design of light-driven rotary molecular motors. These are molecules that absorb light energy and convert it into 360° unidirectional rotary motion around a double bond connecting two molecular halves. In order to facilitate potential applications of molecular motors in nanotechnology, such as in molecular transport or in development of materials with photo-controllable properties, it is critical to optimize the rates and efficiencies of the chemical reactions that produce the rotary motion. To this end, computational methods are in this thesis used to study two different classes of molecular motors. The first class encompasses the sterically overcrowded alkenes developed by Ben Feringa, co-recipient of the 2016 Nobel Prize in Chemistry. The rotary cycles of these motors involve two photoisomerization and two thermal isomerization steps, where the latter are the ones that limit the attainable rotational frequencies. In the thesis, several new motors of this type are proposed by identifying steric, electronic and conformational approaches to accelerate the thermal isomerizations. The second class contains motors that incorporate a protonated Schiff base and are capable to achieve higher photoisomerization rates than overcrowded alkene-based motors. In the thesis, a new motor of this type is proposed that produces unidirectional rotary motion by means of two photochemical steps alone. Also, this motor lacks both a stereocenter and helical motifs, which are key features of almost all synthetic rotary motors developed to date. The second part of the thesis focuses on the design and assessment of composite computational procedures for modeling excited electronic states of organic chromophores. In particular, emphasis is put on developing procedures that facilitate the calculations of accurate 0−0 excitation energies of such compounds in a cost-effective way by combining quantum chemical methods with different accuracies

    On the possibility to accelerate the thermal isomerizations of overcrowded alkene-based rotary molecular motors with electron-donating or electron-withdrawing substituents

    Get PDF
    We employ computational methods to investigate the possibility of using electron-donating or electron-withdrawing substituents to reduce the free-energy barriers of the thermal isomerizations that limit the rotational frequencies achievable by synthetic overcrowded alkene-based molecular motors. Choosing as reference systems one of the fastest motors known to date and two variants thereof, we consider six new motors obtained by introducing electron-donating methoxy and dimethylamino or electron-withdrawing nitro and cyano substituents in conjugation with the central olefinic bond connecting the two (stator and rotator) motor halves. Performing density functional theory calculations, we then show that electron-donating (but not electron-withdrawing) groups at the stator are able to reduce the already small barriers of the reference motors by up to 18 kJ mol(-1). This result outlines a possible strategy for improving the rotational frequencies of motors of this kind. Furthermore, exploring the origin of the catalytic effect, it is found that electron-donating groups exert a favorable steric influence on the thermal isomerizations, which is not manifested by electron-withdrawing groups. This finding suggests a new mechanism for controlling the critical steric interactions of these motors.Funding Agencies|Linkoping University; Swedish Research Council [621-2011-4353]; Olle Engkvist Foundation; Carl Trygger Foundation</p

    Unidirectional Rotary Motion in Isotopically Chiral Molecular Motors: A Computational Analysis

    No full text
    Molecular dynamics simulations are performed to explore if isotopic chirality can induce unidirectional rotary motion in molecular motors operated through double-bond photoisomerizations. Using a high-quantum yield motor featuring a chemically asymmetric carbon atom as reference, it is found that isotopically chiral counterparts of this motor sustain such motion almost equally well. Overall, the study reveals a previously unexplored role for isotopic chirality in the design of rotary molecular motors.Funding Agencies|Olle Engkvist Foundation [184-568, 204-0183]; Swedish Research CouncilSwedish Research Council [2019-03664]</p

    Computational Insight to Improve the Thermal Isomerisation Performance of Overcrowded Alkene-Based Molecular Motors through Structural Redesign

    No full text
    Synthetic overcrowded alkene-based molecular motors achieve 360° unidirectional rotary motion of one motor half (rotator) relative to the other (stator) through sequential photochemical and thermal isomerisation steps. In order to facilitate and expand the use of these motors for various applications, it is important to investigate ways to increase the rates and efficiencies of the reactions governing the rotary motion. Here, we use computational methods to explore whether the thermal isomerisation performance of some of the fastest available motors of this type can be further improved by reducing the sizes of the motor halves. Presenting three new redesigned motors that combine an indanylidene rotator with a cyclohexadiene, pyran or thiopyran stator, we first use multiconfigurational quantum chemical methods to verify that the photoisomerisations of these motors sustain unidirectional rotary motion. Then, by performing density functional calculations, we identify both stepwise and concerted mechanisms for the thermal isomerisations of the motors and show that the rate-determining free-energy barriers of these processes are up to 25 kJ mol−1 smaller than those of the original motors. Furthermore, the thermal isomerisations of the redesigned motors proceed in fewer steps. Altogether, the results suggest that the redesigned motors are useful templates for improving the thermal isomerisation performance of existing overcrowded alkene-based motors.Funding agencies: Swedish Research Council [621-2011-4353]; Olle Engkvist Foundation [2014/734]; Carl Trygger Foundation [CTS 15:134]; Linkoping University</p

    Modulating the Photocyclization Reactivity of Diarylethenes through Changes in the Excited-State Aromaticity of the it-Linker

    No full text
    Quantum chemical calculations are performed to explore if the reactivity of diarylethene switches toward photocyclization can be controlled by the excited-state aromaticity of their bridging pi-linker. Using an archetypal diarylethene with a non aromatic pi-linker as a reference, completely different outcomes are found when the pi-linker is allowed to become either aromatic (no reaction) or antiaromatic (fast reaction) upon photoexcitation. The results demonstrate a possibility to use the excited-state aromaticity concept for actual modulation of photochemical reactivity.Funding Agencies|Olle Engkvist Foundation [204-0183]; Swedish Research Council [2018-05973, 2019-03664]; AForsk [20-570]; Carl Trygger Foundation [CTS 20:102]; Linkoeping University</p

    Computational study of the working mechanism and rate acceleration of overcrowded alkene-based light-driven rotary molecular motors

    No full text
    In recent years, much progress has been made in the design, synthesis and operation of light-driven rotary molecular motors based on chiral overcrowded alkenes. Through consecutive cis–trans photoisomerization and thermal helix inversion steps, where the latter dictate the overall rate of rotation, these motors achieve a full 360° unidirectional rotation around the carbon–carbon double bond connecting the two (rotator and stator) alkene halves. In this work, we report quantum chemical calculations indicating that a particularly fast-rotating overcrowded alkene-based motor capable of reaching the MHz regime, can be made to rotate even faster by the substitution of a rotator methyl group with a methoxy group. Specifically, using density functional theory methods that reproduce the rate-limiting 35 kJ mol−1 thermal free-energy barriers shown by the methyl-bearing motor with errors of 5 kJ mol−1 only, it is predicted that this substitution reduces these barriers by a significant 15–20 kJ mol−1. This prediction is preceded by a series of benchmark calculations for assessing how well density functional theory methods account for available experimental data (crystallographic, UV-vis absorption, thermodynamic) on the rotary cycles of overcrowded alkenes, and a detailed examination of the thermal and photochemical reaction mechanisms of the original motor of this type

    Computational Comparison of Chemical and Isotopic Approaches to Control the Photoisomerization Dynamics of Light-Driven Molecular Motors

    No full text
    Synthetic molecular motors driven by E/Z photoisomerization reactions are able to produce unidirectional rotary motion because of a structural asymmetry that makes one direction of rotation more probable than the other. In most such motors, this asymmetry is realized through the incorporation of a chemically asymmetric carbon atom. Here, we present molecular dynamics simulations based on multiconfigurational quantum chemistry to investigate whether the merits of this approach can be equaled by an alternative approach that instead exploits isotopic chirality. By first considering an N-methylpyrrolidine–cyclopentadiene motor design, it is shown that isotopically chiral variants of this design undergo faster photoisomerizations than a chemically chiral counterpart, while maintaining rotary photoisomerization quantum yields of similarly high magnitude. However, by subsequently considering a pyrrolinium–cyclopentene design, it is also found that the introduction of isotopic chirality does not provide any control of the directionality of the photoinduced rotations within this framework. Taken together, the results highlight both the potential usefulness of isotopic rather than chemical chirality for the design of light-driven molecular motors, and the need for further studies to establish the exact structural circumstances under which this asymmetry is best exploited.Funding: Olle Engkvist Foundation [184-568, 204-0183]; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2019-03664, 2018-05973]; AForsk [20-570]; Carl Trygger Foundation [CTS 20:102]; Marie Sklodowska-Curie Individual Fellowship - European Commission as a part of the Horizon 2020 Research and Innovation Framework Programme [H2020-MSCA-IF-2018-844230]; Linkoping University</p

    Assessment of a composite CC2/DFT procedure for calculating 0-\u80\u930 excitation energies of organic molecules

    No full text
    The task to assess the performance of quantum chemical methods in describing electronically excited states has in recent years started to shift from calculation of vertical (ΔEve) to calculation of 0-\u80\u930 excitation energies (ΔE00). Here, based on a set of 66 excited states of organic molecules for which high-resolution experimental ΔE00 energies are available and for which the approximate coupled-cluster singles and doubles (CC2) method performs particularly well, we explore the possibility to simplify the calculation of CC2-quality ΔE00 energies using composite procedures that partly replace CC2 with more economical methods. Specifically, we consider procedures that employ CC2 only for the ΔEve part and density functional theory methods for the cumbersome excited-state geometry optimisations and frequency calculations required to obtain ΔE00 energies from ΔEve ones. The results demonstrate that it is indeed possible to both closely (to within 0.06-\u80\u930.08 eV) and consistently approximate â\u80\u98trueâ\u80\u99 CC2 ΔE00 energies in this way, especially when CC2 is combined with hybrid density functionals. Overall, the study highlights the unexploited potential of composite procedures, which hitherto have found widespread use mostly in ground-state chemistry, to also play an important role in facilitating accurate studies of excited states.Funding agencies: Swedish Research Council [621-2011-4353]; Olle Engkvist Foundation [2014/734]; Carl Trygger Foundation [CTS 15:134]; Wenner-Gren Foundations; Linkoping University</p
    corecore