22,432 research outputs found
Does solar structure vary with solar magnetic activity?
We present evidence that solar structure changes with changes in solar
activity. We find that the adiabatic index, Gamma_1, changes near the second
helium ionization, i.e., at a depth of about 0.98 R_sun. We believe that this
change is a result of the change in the effective equation of state caused by
magnetic fields. Inversions should be able to detect the changes in Gamma_1 if
mode sets with reliable and precise high-degree modes are available.Comment: To appear in ApJ Letter
Scaling and universality in coupled driven diffusive models
Inspired by the physics of magnetohydrodynamics (MHD) a simplified coupled
Burgers-like model in one dimension (1d), a generalization of the Burgers model
to coupled degrees of freedom, is proposed to describe 1dMHD. In addition to
MHD, this model serves as a 1d reduced model for driven binary fluid mixtures.
Here we have performed a comprehensive study of the universal properties of the
generalized d-dimensional version of the reduced model. We employ both
analytical and numerical approaches. In particular, we determine the scaling
exponents and the amplitude-ratios of the relevant two-point time-dependent
correlation functions in the model. We demonstrate that these quantities vary
continuously with the amplitude of the noise cross-correlation. Further our
numerical studies corroborate the continuous dependence of long wavelength and
long time-scale physics of the model on the amplitude of the noise
cross-correlations, as found in our analytical studies. We construct and
simulate lattice-gas models of coupled degrees of freedom in 1d, belonging to
the universality class of our coupled Burgers-like model, which display similar
behavior. We use a variety of numerical (Monte-Carlo and Pseudospectral
methods) and analytical (Dynamic Renormalization Group, Self-Consistent
Mode-Coupling Theory and Functional Renormalization Group) approaches for our
work. The results from our different approaches complement one another.
Possible realizations of our results in various nonequilibrium models are
discussed.Comment: To appear in JSTAT (2009); 52 pages in JSTAT format. Some figure
files have been replace
On Gauss's first proof of the fundamental theorem of algebra
Carl Friedrich Gauss is often given credit for providing the first correct
proof of the fundamental theorem of algebra in his 1799 doctoral dissertation.
However, Gauss's proof contained a significant gap. In this paper, we give an
elementary way of filling the gap in Gauss's proof.Comment: 9 pages, 1 figure. To appear in American Mathematical Monthl
Determining solar abundances using helioseismology
The recent downward revision of solar photospheric abundances of Oxygen and
other heavy elements has resulted in serious discrepancies between solar models
and solar structure as determined through helioseismology. In this work we
investigate the possibility of determining the solar heavy-element abundance
without reference to spectroscopy by using helioseismic data. Using the
dimensionless sound-speed derivative in the solar convection zone, we find that
the heavy element abundance, Z, of 0.0172 +/- 0.002, which is closer to the
older, higher value of the abundances.Comment: To appear in Ap
Real root finding for equivariant semi-algebraic systems
Let be a real closed field. We consider basic semi-algebraic sets defined
by -variate equations/inequalities of symmetric polynomials and an
equivariant family of polynomials, all of them of degree bounded by .
Such a semi-algebraic set is invariant by the action of the symmetric group. We
show that such a set is either empty or it contains a point with at most
distinct coordinates. Combining this geometric result with efficient algorithms
for real root finding (based on the critical point method), one can decide the
emptiness of basic semi-algebraic sets defined by polynomials of degree
in time . This improves the state-of-the-art which is exponential
in . When the variables are quantified and the
coefficients of the input system depend on parameters , one
also demonstrates that the corresponding one-block quantifier elimination
problem can be solved in time
Software for cut-generating functions in the Gomory--Johnson model and beyond
We present software for investigations with cut generating functions in the
Gomory-Johnson model and extensions, implemented in the computer algebra system
SageMath.Comment: 8 pages, 3 figures; to appear in Proc. International Congress on
Mathematical Software 201
Exercise and hypertrophic cardiomyopathy: Two incompatible entities?
A greater understanding of the pathogenic mechanisms underpinning hypertrophic cardiomyopathy (HCM) has translated to improved medical care and better survival of affected individuals. Historically these patients were considered to be at high risk of sudden cardiac death (SCD) during exercise; therefore, exercise recommendations were highly conservative and promoted a sedentary life style. There is emerging evidence that suggests that exercise in HCM has a favorable effect on cardiovascular remodeling and moderate exercise programs have not raised any safety concerns. Furthermore, individuals with HCM have a similar burden of atherosclerotic risk factors as the general population in whom exercise has been associated with a reduction in myocardial infarction, stroke, and heart failure, especially among those with a high-risk burden. Small studies revealed that athletes who choose to continue with regular competition do not demonstrate adverse outcomes when compared to those who discontinue sport, and active individuals implanted with an implantable cardioverter defibrillator do not have an increased risk of appropriate shocks or other adverse events. The recently published exercise recommendations from the European Association for Preventative Cardiology account for more contemporary evidence and adopt a more liberal stance regarding competitive and high intensity sport in individuals with low-risk HCM. This review addresses the issue of exercise in individuals with HCM, and explores current evidence supporting safety of exercise in HCM, potential caveats, and areas of further research
Casimir stresses in active nematic films
We calculate the Casimir stresses in a thin layer of active fluid with nematic order. By using a stochastic hydrodynamic approach for an active fluid layer of finite thickness L, we generalize the Casimir stress for nematic liquid crystals in thermal equilibrium to active systems. We show that the active Casimir stress differs significantly from its equilibrium counterpart. For contractile activity, the active Casimir stress, although attractive like its equilibrium counterpart, diverges logarithmically as L approaches a threshold of the spontaneous flow instability from below. In contrast, for small extensile activity, it is repulsive, has no divergence at any L and has a scaling with L different from its equilibrium counterpart
- …