49 research outputs found

    The development of magmatism along the Cameroon Volcanic Line: Evidence from teleseismic receiver functions

    No full text
    [1] The Cameroon Volcanic Line (CVL) in West Africa is a chain of Cenozoic volcanism with no clear age progression. The reasons for its existence are unclear, and the nature of its magmatic plumbing system is poorly understood. Specifically, whether or not the CVL crust presently contains melt and/or mafic intrusions, as is often observed at hot spots and rifts elsewhere, is presently unknown. To address this issue, we present a receiver function study of crustal structure using earthquakes recorded by the Cameroon Broadband Seismic Experiment. In regions of the CVL unaffected by Cretaceous extension associated with the breakup of Gondwana (e.g., the Garoua rift), Vp/Vs ratios are markedly low (network average ?1.74) compared to hot spots elsewhere, providing no evidence for either melt or cooled mafic crustal intrusions due to CVL magmatism. The character of P-to-S conversions from beneath the CVL also indicates that lower-crustal intrusions (often termed underplate) are not present beneath the region. Our observations thus corroborate earlier petrological studies that show CVL alkaline magmas fractionate in the mantle, not the crust, prior to eruption. Hypotheses for the formation of the CVL should not include markedly elevated upper-mantle potential temperatures, or large volumes of partial melt, both of which can explain observations at hot spots and rifts worldwide. The protracted, yet sporadic, development of small-volume alkali melts beneath the CVL may instead be explained better by lower melt volume mechanisms such as shear zone reactivation or lithospheric delamination

    The development of magmatism along the Cameroon Volcanic Line: evidence from seismicity and seismic anisotropy

    Get PDF
    The Cameroon Volcanic Line (CVL) straddles the continent-ocean boundary in West Africa but exhibits no clear age progression. This renders it difficult to explain by traditional plume/plate motion hypotheses; thus, there remains no consensus on the processes responsible for its development. To understand better the nature of asthenospheric flow beneath the CVL, and the effects of hotspot tectonism on the overlying lithosphere, we analyze mantle seismic anisotropy and seismicity. Cameroon is relatively aseismic compared to hotspots elsewhere, with little evidence for magmatism-related crustal deformation away from Mount Cameroon, which last erupted in 2000. Low crustal Vp/Vs ratios (?1.74) and a lack of evidence for seismically anisotropic aligned melt within the lithosphere both point toward a poorly developed magmatic plumbing system beneath the CVL. Null SKS splitting observations dominate the western continental portion of the CVL; elsewhere, anisotropic fast polarization directions parallel the strike of the Precambrian Central African Shear Zone (CASZ). The nulls may imply that the convecting upper mantle beneath the CVL is isotropic, or characterized by a vertically oriented olivine lattice preferred orientation fabric, perhaps due to a mantle plume or the upward limb of a small-scale convection cell. Precambrian CASZ fossil lithospheric fabrics along the CVL may have been thermomechanically eroded during Gondwana breakup ?130?Ma, with an isotropic lower lithosphere subsequently reforming due to cooling of the slow-moving African plate. Small-scale lithospheric delamination during the 30?Ma recent development of the line may also have contributed to the erosion of the CASZ lithospheric fossil anisotropy, at the same time as generating the low-volume alkaline basaltic volcanism along the CV

    CAN-HK : An a priori crustal model for the Canadian Shield

    Get PDF
    ACKNOWLEDGMENTS The United Kingdom component of the Hudson Bay Lithospheric Experiment (HuBLE) was supported by the Natural Environment Research Council (NERC) Grant Number NE/F007337/1, with financial and logistical support from the Geological Survey of Canada (GSC), Canada-Nunavut Geoscience Office (CNGO), SEIS-UK (the seismic node of NERC), and the First Nations communities of Nunavut. J. Beauchesne and J. Kendall provided invaluable assistance in the field. I. D. B. was funded by the Leverhulme Trust and acknowledges support through Grant Number RPG-2013- 332. The authors thank three anonymous reviewers for their constructive comments.Peer reviewedPublisher PD

    The Seismic Moment and Seismic Efficiency of Small Impacts on Mars

    Get PDF
    Since landing in late 2018, the InSight lander has been recording seismic signals on the surface of Mars. Despite nominal prelanding estimates of one to three meteorite impacts detected per Earth year, none have yet been identified seismically. To inform revised detectability estimates, we simulated numerically a suite of small impacts onto Martian regolith and characterized their seismic source properties. For the impactor size and velocity range most relevant for InSight, crater diameters are 1–30 m. We found that in this range scalar seismic moment is 106–1010 Nm and increases almost linearly with impact momentum. The ratio of horizontal to vertical seismic moment tensor components is ∼1, implying an almost isotropic P wave source, for vertical impacts. Seismic efficiencies are ∼10−6, dependent on the target crushing strength and impact velocity. Our predictions of relatively low seismic efficiency and seismic moment suggest that meteorite impact detectability on Mars is lower than previously assumed. Detection chances are best for impacts forming craters of diameter >10 m

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Overview of the JET results in support to ITER

    Get PDF

    The origin of along-rift variations in faulting and magmatism in the Ethiopian Rift

    Get PDF
    The geological record at rifts and margins worldwide often reveals considerable along-strike variations in volumes of extruded and intruded igneous rocks. These variations may be the result of asthenospheric heterogeneity, variations in rate and timing of extension; alternatively, pre-existing plate architecture and/or the evolving kinematics of extension during breakup may exert first order control on magmatism. The Main Ethiopian Rift (MER) in East Africa provides an excellent opportunity to address this dichotomy: it exposes, along-strike, several sectors of asynchronous rift development from continental rifting in the south to incipient oceanic spreading in the north. Here we perform studies of volcanic cone density and rift obliquity along strike in the MER. By synthesizing these new data in light of existing geophysical, geochemical and petrological constraints on magma generation and emplacement, we are able to discriminate between tectonic and mantle geodynamic controls on the geological record of a newly forming magmatic rifted margin. The timing of rift sector development, the three-dimensional focusing of melt, and the ponding of plume material where the rift dramatically narrows, each influence igneous intrusion and volcanism along the MER. However, rifting obliquity plays an important role in localizing intrusion into the crust beneath en-echelon volcanic segments. Along-strike variations in volumes and types of igneous rocks found at rifted margins thus likely carry information about the development of strain during rifting, as well as the physical state of the convecting mantle at the time of breakup

    Mantle upwelling and initiation of rift segmentation beneath the Afar Depression

    Get PDF
    The Afar Depression, at the northern end of the East African Rift, is the only place on land where the transition from a plumeinduced continental breakup to seafloor spreading is active today. New images of seismic velocity structure, based on exceptional new data sets, show that the mantle plume that initiated rifting in Africa is absent beneath Afar today. The images are dominated by a major low-velocity feature at ~75 km depth closely mimicking the abrupt changes in rift axis orientation seen at the surface. This is likely associated with passive upwelling beneath the rift. Additional focused low-velocity anomalies show that small diapiric upwellings are present beneath major off-axis volcanoes. These multiple melting sources can explain the wide range of geochemical signatures seen in Afar. These images suggest that passive upwelling beneath Afar marks the initiation of rift segmentation as continental breakup progresses to seafloor spreading

    Mantle upwellings, melt migration and the rifting of Africa: insights from seismic anisotropy

    Get PDF
    The rifting of continents and eventual formation of ocean basins is a fundamental component of plate tectonics, yet the mechanism for break-up is poorly understood. The East African Rift System (EARS) is an ideal place to study this process as it captures the initiation of a rift in the south through to incipient oceanic spreading in north-eastern Ethiopia. Measurements of seismic anisotropy can be used to test models of rifting. Here we summarize observations of anisotropy beneath the EARS from local and teleseismic body-waves and azimuthal variations in surface-wave velocities. Special attention is given to the Ethiopian part of the rift where the recent EAGLE project has provided a detailed image of anisotropy in the portion of the Ethiopian Rift that spans the transition from continental rifting to incipient oceanic spreading. Analyses of regional surface-waves show sub-lithospheric fast shear-waves coherently oriented in a north-eastward direction from southern Kenya to the Red Sea. This parallels the trend of the deeper African superplume, which originates at the core-mantle boundary beneath southern Africa and rises towards the base of the lithosphere beneath Afar. The pattern of shear-wave anisotropy is more variable above depths of 150 km. Analyses of splitting in teleseismic phases (SKS) and local shear-waves within the rift valley consistently show rift-parallel orientations. The magnitude of the splitting correlates with the degree of magmatism and the polarizations of the shear-waves align with magmatic segmentation along the rift valley. Analysis of surface-wave propagation across the rift valley confirms that anisotropy in the uppermost 75 km is primarily due to melt alignment. Away from the rift valley, the anisotropy agrees reasonably well within the pre-existing Pan-African lithospheric fabric. An exception is the region beneath the Ethiopian plateau, where the anisotropy is variable and may correspond to pre-existing fabric and ongoing melt-migration processes. These observations support models of magma-assisted rifting, rather than those of simple mechanical stretching. Upwellings, which most probably originate from the larger superplume, thermally erode the lithosphere along sites of pre-existing weaknesses or topographic highs. Decompression leads to magmatism and dyke injection that weakens the lithosphere enough for rifting and the strain appears to be localized to plate boundaries, rather than wider zones of deformation

    Precambrian crustal evolution: seismic constraints from the Canadian Shield

    No full text
    Whether or not plate tectonic processes operated on a younger, hotter Earth remains ambiguous. Seismic data from new networks in the Hudson Bay region of the Canadian Shield, where the Precambrian geological record spans more than 2 billion years, offer fresh scope to address this problem. Using receiver function analyses we show that the crust of the Rae domain, which exhibits ages of Paleo- to Neoarchean (3.9–2.7 Ga), is likely felsic-to-intermediate in composition (average Vp/Vs < 1.73) and seismically transparent with a sharp Moho. There is little evidence for modern-style plate tectonics, and based on the simplicity and spatial extent of the felsic crust, models favouring vertical tectonic processes such as crustal delamination or plume activity appear better suited to the results. Data from the Hearne domain, which exhibits widespread ~ 2.7 Ga granite-and-greenstone geology, show a more complex crust with higher Vp/Vs ratios, consistent with a greater mafic component. The Trans-Hudson Orogen (THO), proposed to be a Himalayan-scale mountain belt during the Paleoproterozoic, is thought to have formed during the ~ 1.8 Ga collision of the Superior and Churchill plates. Results from the Quebec–Baffin Island segment of the THO appear to map out the first-order shape of the underthrusting Superior plate, with elevated Vp/Vs ratios likely representing the rifted margin of the Superior craton. Consistently thicker crust is observed beneath central and southern Baffin Island (~43 km), coincident with widespread high-grade metamorphic surface geology. These features can be explained by crustal thickening due to stacking of accreted terranes during continent–continent collision, analogous to the present-day Tibetan Plateau, followed by erosion. When reviewed in light of age and compositional constraints from the geological record, our seismic observations point towards secular crustal evolution from non-plate tectonic during the Paleo- to Mesoarchean evolving towards fully-developed modern-style plate tectonics during the Paleoproterozoic
    corecore