216 research outputs found

    Mass Mortality of Adult Male Subantarctic Fur Seals: Are Alien Mice the Culprits?

    Get PDF
    Background: Mass mortalities of marine mammals due to infectious agents are increasingly reported. However, in contrast to previous die-offs, which were indiscriminate with respect to sex and age, here we report a land-based mass mortality of Subantarctic fur seals with apparent exclusivity to adult males. An infectious agent with a male-predilection is the most plausible explanation for this die-off. Although pathogens with gender-biased transmission and pathologies are unusual, rodents are known sources of male-biased infectious agents and the invasive Mus musculus house mouse, occurs in seal rookeries. Methodology / Principal Findings: Molecular screening for male-biased pathogens in this potential rodent reservoir host revealed the absence of Cardiovirus and Leptospirosis genomes in heart and kidney samples, respectively, but identified a novel Streptococcus species with 30 % prevalence in mouse kidneys. Conclusions / Significance: Inter-species transmission through environmental contamination with this novel bacterium, whose congenerics display male-bias and have links to infirmity in seals and terrestrial mammals (including humans)

    Chronic kidney disease increases cardiovascular unfavourable outcomes in outpatients with heart failure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic heart failure (CHF) has a high morbidity and mortality. Chronic kidney disease (CKD) has consistently been found to be an independent risk factor for unfavorable cardiovascular (CV) outcomes. Early intervention on CKD reduces the progression of CHF, hospitalizations and mortality, yet there are very few studies about CKD as a risk factor in the early stages of CHF. The aims of our study were to assess the prevalence and the prognostic importance of CKD in patients with systolic CHF stages B and C.</p> <p>Methods</p> <p>This is a prospective cohort study, dealing with prognostic markers for CV endpoints in patients with systolic CHF (ejection fraction ≤ 45%).</p> <p>Results</p> <p>CKD was defined as estimated glomerular filtration rate <60 mL/min/1.73 m<sup>2 </sup>and CV endpoints as death or hospitalization due to CHF, in 12 months follow-up. Eighty three patients were studied, the mean age was 62.7 ± 12 years, and 56.6% were female. CKD was diagnosed in 49.4% of the patients, 33% of patients with CHF stage B and 67% in the stage C. Cardiovascular endpoints were observed in 26.5% of the patients. When the sample was stratified into stages B and C of CHF, the occurrence of CKD was associated with 100% and 64.7%, respectively, of unfavorable CV outcomes. After adjustments for all other prognostic factors at baseline, it was observed that the diagnosis of CKD increased in 3.6 times the possibility of CV outcomes (CI 95% 1.04-12.67, p = 0.04), whereas higher ejection fraction (R = 0.925, IC 95% 0.862-0.942, p = 0.03) and serum sodium (R = 0.807, IC 95% 0.862-0.992, p = 0.03) were protective.</p> <p>Conclusion</p> <p>In this cohort of patients with CHF stages B and C, CKD was prevalent and independently associated with increased risk of hospitalization and death secondary to cardiac decompensation, especially in asymptomatic patients.</p

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Molecular Modeling Study for Inhibition Mechanism of Human Chymase and Its Application in Inhibitor Design

    Get PDF
    Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymasecomplexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitorymechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes

    Resting heart rate as a predictor of metabolic dysfunctions in obese children and adolescents

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have identified that a higher resting heart rate (RHR) is associated with elevated blood pressure, independent of body fatness, age and ethnicity. However, it is still unclear whether RHR can also be applied as a screening for other risk factors, such as hyperglycemia and dyslipidemia. Thus, the purpose of the presented study was to analyze the association between RHR, lipid profile and fasting glucose in obese children and adolescents.</p> <p>Methods</p> <p>The sample was composed of 180 obese children and adolescents, aged between 7-16 years. Whole-body and segmental body composition were estimated by Dual-energy X-ray absorptiometry. Resting heart rate (RHR) was measured by heart rate monitors. The fasting blood samples were analyzed for serum triglycerides, total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose, using the colorimetric method.</p> <p>Results</p> <p>Fasting glucose, TC, triglycerides, HDL-C, LDL-C and RHR were similar in both genders. The group of obese subjects with a higher RHR presented, at a lower age, higher triglycerides and TC. There was a significant relationship between RHR, triglycerides and TC. In the multivariate model, triglycerides and TC maintained a significant relationship with RHR independent of age, gender, general and trunk adiposity. The ROC curve indicated that RHR has a high potential for screening elevated total cholesterol and triglycerides as well as dyslipidemia.</p> <p>Conclusion</p> <p>Elevated RHR has the potential to identify subjects at an increased risk of atherosclerosis development.</p

    Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine

    Get PDF
    Background: The lack of sensitive and specific biomarkers for the early detection of prostate cancer (PCa) is a major hurdle to improve patient management. Methods: A metabolomics approach based on GC-MS was used to investigate the performance of volatile organic compounds (VOCs) in general and, more specifically, volatile carbonyl compounds (VCCs) present in urine as potential markers for PCa detection. Results: Results showed that PCa patients (n = 40) can be differentiated from cancer-free subjects (n = 42) based on their urinary volatile profile in both VOCs and VCCs models, unveiling significant differences in the levels of several metabolites. The models constructed were further validated using an external validation set (n = 18 PCa and n = 18 controls) to evaluate sensitivity, specificity and accuracy of the urinary volatile profile to discriminate PCa from controls. The VOCs model disclosed 78% sensitivity, 94% specificity and 86% accuracy, whereas the VCCs model achieved the same sensitivity, a specificity of 100% and an accuracy of 89%. Our findings unveil a panel of 6 volatile compounds significantly altered in PCa patients' urine samples that was able to identify PCa, with a sensitivity of 89%, specificity of 83%, and accuracy of 86%. Conclusions: It is disclosed a biomarker panel with potential to be used as a non-invasive diagnostic tool for PCa.info:eu-repo/semantics/publishedVersio
    corecore