605 research outputs found

    Tos4 mediates gene expression homeostasis through interaction with HDAC complexes independently of H3K56 acetylation

    Get PDF
    Saccharomyces cerevisiae exhibits gene expression homeostasis, which is defined as the buffering of transcription levels against changes in DNA copy number during the S phase of the cell cycle. It has been suggested that S. cerevisiae employs an active mechanism to maintain gene expression homeostasis through Rtt109-Asf1-dependent acetylation of histone H3 on lysine 56 (H3K56). Here, we show that gene expression homeostasis can be achieved independently of H3K56 acetylation by Tos4 (Target of Swi6-4). Using Nanostring technology, we establish that Tos4-dependent gene expression homeostasis depends on its forkhead-associated (FHA) domain, which is a phosphopeptide recognition domain required to bind histone deacetylases (HDACs). We demonstrate that the mechanism of Tos4-dependent gene expression homeostasis requires its interaction with the Rpd3L HDAC complex. However, this is independent of Rpd3’s well-established roles in both histone deacetylation and controlling the DNA replication timing program, as established by deep sequencing of Fluorescence-Activated Cell Sorted (FACS) S and G2 phase populations. Overall, our data reveals that Tos4 mediates gene expression homeostasis through its FHA domain-dependent interaction with the Rpd3L complex, which is independent of H3K56ac

    Osmoregulatory bicarbonate secretion exploits H(+)-sensitive haemoglobins to autoregulate intestinal O2 delivery in euryhaline teleosts

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.Marine teleost fish secrete bicarbonate (HCO3 (-)) into the intestine to aid osmoregulation and limit Ca(2+) uptake by carbonate precipitation. Intestinal HCO3 (-) secretion is associated with an equimolar transport of protons (H(+)) into the blood, both being proportional to environmental salinity. We hypothesized that the H(+)-sensitive haemoglobin (Hb) system of seawater teleosts could be exploited via the Bohr and/or Root effects (reduced Hb-O2 affinity and/or capacity with decreasing pH) to improve O2 delivery to intestinal cells during high metabolic demand associated with osmoregulation. To test this, we characterized H(+) equilibria and gas exchange properties of European flounder (Platichthys flesus) haemoglobin and constructed a model incorporating these values, intestinal blood flow rates and arterial-venous acidification at three different environmental salinities (33, 60 and 90). The model suggested red blood cell pH (pHi) during passage through intestinal capillaries could be reduced by 0.14-0.33 units (depending on external salinity) which is sufficient to activate the Bohr effect (Bohr coefficient of -0.63), and perhaps even the Root effect, and enhance tissue O2 delivery by up to 42 % without changing blood flow. In vivo measurements of intestinal venous blood pH were not possible in flounder but were in seawater-acclimated rainbow trout which confirmed a blood acidification of no less than 0.2 units (equivalent to -0.12 for pHi). When using trout-specific values for the model variables, predicted values were consistent with measured in vivo values, further supporting the model. Thus this system is an elegant example of autoregulation: as the need for costly osmoregulatory processes (including HCO3 (-) secretion) increases at higher environmental salinity, so does the enhancement of O2 delivery to the intestine via a localized acidosis and the Bohr (and possibly Root) effect.Underlying research materials, i.e. raw data, is accessible by contacting the corresponding author, Dr. Rod Wilson at [email protected]. This research was supported by BBSRC and NERC grants (BB/D005108/1 and NE/H010041/1) to RWW and an NSERC Discovery grant to CJB. We would like to thank Jan Shears for excellent technical support and fish husbandry

    Collaborative and Inclusive Process with the Autism Community: A Case Study in Colombia About Social Robot Design

    Get PDF
    One of the most promising areas in which social assistive robotics has been introduced is therapeutic intervention for children with autism spectrum disorders (CwASD). Even though there are promising results in therapeutic contexts, there is a lack of guidelines on how to select the appropriate robot and how to design and implement the child-robot interaction. The use of participatory design (PD) methods in the design of technology-based processes for CwASD is a recognition of the stakeholders as "experts" in their fields. This work explores the benefits brought by the use of PD methods in the design of a social robot, with a specific focus on their use in autism spectrum disorders therapies on the Colombian autism community. Based on what proved to be effective in our previous research, we implemented participatory methods for both the CwASD and the stakeholders. The process leverages the active role of participants using a focus group approach with parents and specialists, and scene cards, narrative and handmade generative methods with the children. To overcome some challenges of traditional PD processes, where not all community actors are considered, we included a Colombian community consisting of therapists, nurses, caregivers and parents. The proposed PD process provides an opportunity to learn from several community actors (and thus different cultural and social aspects of developing countries), improving traditional robot design methods. In this way, the findings are summarized through a set of guidelines regarding the design of a social robot-device suitable to be implemented for robot-assisted therapy for CwASD

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Prime movers : mechanochemistry of mitotic kinesins

    Get PDF
    Mitotic spindles are self-organizing protein machines that harness teams of multiple force generators to drive chromosome segregation. Kinesins are key members of these force-generating teams. Different kinesins walk directionally along dynamic microtubules, anchor, crosslink, align and sort microtubules into polarized bundles, and influence microtubule dynamics by interacting with microtubule tips. The mechanochemical mechanisms of these kinesins are specialized to enable each type to make a specific contribution to spindle self-organization and chromosome segregation
    • …
    corecore