53 research outputs found

    Hydroxybenzothiazoles as New Nonsteroidal Inhibitors of 17β-Hydroxysteroid Dehydrogenase Type 1 (17β-HSD1)

    Get PDF
    17β-estradiol (E2), the most potent estrogen in humans, known to be involved in the development and progession of estrogen-dependent diseases (EDD) like breast cancer and endometriosis. 17β-HSD1, which catalyses the reduction of the weak estrogen estrone (E1) to E2, is often overexpressed in breast cancer and endometriotic tissues. An inhibition of 17β-HSD1 could selectively reduce the local E2-level thus allowing for a novel, targeted approach in the treatment of EDD. Continuing our search for new nonsteroidal 17β-HSD1 inhibitors, a novel pharmacophore model was derived from crystallographic data and used for the virtual screening of a small library of compounds. Subsequent experimental verification of the virtual hits led to the identification of the moderately active compound 5. Rigidification and further structure modifications resulted in the discovery of a novel class of 17β-HSD1 inhibitors bearing a benzothiazole-scaffold linked to a phenyl ring via keto- or amide-bridge. Their putative binding modes were investigated by correlating their biological data with features of the pharmacophore model. The most active keto-derivative 6 shows IC50-values in the nanomolar range for the transformation of E1 to E2 by 17β-HSD1, reasonable selectivity against 17β-HSD2 but pronounced affinity to the estrogen receptors (ERs). On the other hand, the best amide-derivative 21 shows only medium 17β-HSD1 inhibitory activity at the target enzyme as well as fair selectivity against 17β-HSD2 and ERs. The compounds 6 and 21 can be regarded as first benzothiazole-type 17β-HSD1 inhibitors for the development of potential therapeutics

    Neurodevelopment Genes in Lampreys Reveal Trends for Forebrain Evolution in Craniates

    Get PDF
    The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates

    Subsurface interactions of actinide species and microorganisms: Implications for the bioremediation of actinide-organic mixtures

    Full text link

    CALUX measurements: statistical inferences for the dose response curve

    No full text
    Chemical Activated LUciferase gene eXpression [CALUX] is a reporter gene mammalian cell bioassay used for detection and semi-quantitative analyses of dioxin-like compounds. CALUX dose–response curves for 2,3,7,8-tetrachlorodibenzo-p-dioxin [TCDD] are typically smooth and sigmoidal when the dose is portrayed on a logarithmic scale. Non-linear regression models are used to calibrate the CALUX response versus TCDD standards and to convert the sample response into Bioanalytical EQuivalents (BEQs). Several complications may arise in terms of statistical inference, specifically and most important is the uncertainty assessment of the predicted BEQ. This paper presents the use of linear calibration functions based on Box–Cox transformations to overcome the issue of uncertainty assessment. Main issues being addressed are (i) confidence and prediction intervals for the CALUX response, (ii) confidence and prediction intervals for the predicted BEQ-value, and (iii) detection/estimation capabilities for the sigmoid and linearized models. Statistical comparisons between different calculation methods involving inverse prediction, effective concentration ratios (ECR20–50–80) and slope ratio were achieved with example datasets in order to provide guidance for optimizing BEQ determinations and expand assay performance with the recombinant mouse hepatoma CALUX cell line H1L6.1c3.status: publishe
    • …
    corecore