18 research outputs found

    Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics

    Get PDF
    With the advent of mass spectrometry based proteomics, the identification of thousands of proteins has become commonplace in biology nowadays. Increasingly, efforts have also been invested toward the detection and localization of posttranslational modifications. It is furthermore common practice to quantify the identified entities, a task supported by a panel of different methods. Finally, the results can also be enriched with functional knowledge gained on the proteins, detecting for instance differentially expressed gene ontology terms or biological pathways. In this study, we review the resources, methods and tools available for the researcher to achieve such a quantitative functional analysis. These include statistics for the post-processing of identification and quantification results, online resources and public repositories. With a focus on free but user-friendly software, preferably also open-source, we provide a list of tools designed to help the researcher manage the vast amount of data generated. We also indicate where such applications currently remain lacking. Moreover, we stress the eventual pitfalls of every step of such studies. This article is part of a Special Issue entitled: Computational Proteomics in the Post-Identification Era. Guest Editors: Martin Eisenacher and Christian Stephan

    Impaired bone healing in multitrauma patients is associated with altered leukocyte kinetics after major trauma

    No full text
    Okan W Bastian,1 Anne Kuijer,1 Leo Koenderman,2 Rebecca K Stellato,3 Wouter W van Solinge,4 Luke PH Leenen,1 Taco J Blokhuis1 1Department of Traumatology, 2Department of Respiratory Medicine, 3Department of Biostatistics and Research Support, Julius Center, 4Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, the Netherlands Abstract: Animal studies have shown that the systemic inflammatory response to major injury impairs bone regeneration. It remains unclear whether the systemic immune response contributes to impairment of fracture healing in multitrauma patients. It is well known that systemic inflammatory changes after major trauma affect leukocyte kinetics. We therefore retrospectively compared the cellular composition of peripheral blood during the first 2 weeks after injury between multitrauma patients with normal (n=48) and impaired (n=32) fracture healing of the tibia. The peripheral blood-count curves of leukocytes, neutrophils, monocytes, and thrombocytes differed significantly between patients with normal and impaired fracture healing during the first 2 weeks after trauma (P-values were 0.0122, 0.0083, 0.0204, and <0.0001, respectively). Mean myeloid cell counts were above reference values during the second week after injury. Our data indicate that leukocyte kinetics differ significantly between patients with normal and impaired fracture healing during the first 2 weeks after major injury. This finding suggests that the systemic immune response to major trauma can disturb tissue regeneration. Keywords: SIRS, inflammation, neutrophils, myelopoiesis, regeneratio
    corecore