5 research outputs found

    Meiotic crossover reduction by virus-induced gene silencing enables the efficient generation of chromosome substitution lines and reverse breeding in Arabidopsis thaliana.

    Get PDF
    Plant breeding applications exploiting meiotic mutant phenotypes (like the increase or decrease of crossover (CO) recombination) have been proposed over the last years. As recessive meiotic mutations in breeding lines may affect fertility or have other pleiotropic effects, transient silencing techniques may be preferred. Reverse breeding is a breeding technique that would benefit from the transient downregulation of CO formation. The technique is essentially the opposite of plant hybridization: a method to extract parental lines from a hybrid. The method can also be used to efficiently generate chromosome substitution lines (CSLs). For successful reverse breeding, the two homologous chromosome sets of a heterozygous plant must be divided over two haploid complements, which can be achieved by the suppression of meiotic CO recombination and the subsequent production of doubled haploid plants. Here we show the feasibility of transiently reducing CO formation using virus-induced gene silencing (VIGS) by targeting the meiotic gene MSH5 in a wild-type heterozygote of Arabidopsis thaliana. The application of VIGS (rather than using lengthy stable transformation) generates transgene-free offspring with the desired genetic composition: we obtained parental lines from a wild-type heterozygous F1 in two generations. In addition, we obtained 20 (of the 32 possible) CSLs in one experiment. Our results demonstrate that meiosis can be modulated at will in A. thaliana to generate CSLs and parental lines rapidly for hybrid breeding. Furthermore, we illustrate how the modification of meiosis using VIGS can open routes to develop efficient plant breeding strategies

    The Cdk1/Cdk2 homolog CDKA;1 controls the recombination landscape in Arabidopsis

    Get PDF
    Little is known how patterns of cross-over (CO) numbers and distribution during meiosis are established. Here, we reveal that cyclin-dependent kinase A;1 (CDKA;1), the homolog of human Cdk1 and Cdk2, is a major regulator of meiotic recombination in Arabidopsis. Arabidopsis plants with reduced CDKA;1 activity experienced a decrease of class I COs, especially lowering recombination rates in centromere-proximal regions. Interestingly, this reduction of type I CO did not affect CO assurance, a mechanism by which each chromosome receives at least one CO, resulting in all chromosomes exhibiting similar genetic lengths in weak loss-of-function cdka;1 mutants. Conversely, an increase of CDKA;1 activity resulted in elevated recombination frequencies. Thus, modulation of CDKA;1 kinase activity affects the number and placement of COs along the chromosome axis in a dose-dependent manner.</p

    Genetic Mapping of Genotype-by-Ploidy Effects in <i>Arabidopsis thaliana</i>

    No full text
    Plants can express different phenotypic responses following polyploidization, but ploidy-dependent phenotypic variation has so far not been assigned to specific genetic factors. To map such effects, segregating populations at different ploidy levels are required. The availability of an efficient haploid inducer line in Arabidopsis thaliana allows for the rapid development of large populations of segregating haploid offspring. Because Arabidopsis haploids can be self-fertilised to give rise to homozygous doubled haploids, the same genotypes can be phenotyped at both the haploid and diploid ploidy level. Here, we compared the phenotypes of recombinant haploid and diploid offspring derived from a cross between two late flowering accessions to map genotype × ploidy (G × P) interactions. Ploidy-specific quantitative trait loci (QTLs) were detected at both ploidy levels. This implies that mapping power will increase when phenotypic measurements of monoploids are included in QTL analyses. A multi-trait analysis further revealed pleiotropic effects for a number of the ploidy-specific QTLs as well as opposite effects at different ploidy levels for general QTLs. Taken together, we provide evidence of genetic variation between different Arabidopsis accessions being causal for dissimilarities in phenotypic responses to altered ploidy levels, revealing a G × P effect. Additionally, by investigating a population derived from late flowering accessions, we revealed a major vernalisation-specific QTL for variation in flowering time, countering the historical bias of research in early flowering accessions
    corecore