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SUMMARY

Plant breeding applications exploiting meiotic mutant phenotypes (like the increase or decrease of cross-

over (CO) recombination) have been proposed over the last years. As recessive meiotic mutations in breed-

ing lines may affect fertility or have other pleiotropic effects, transient silencing techniques may be

preferred. Reverse breeding is a breeding technique that would benefit from the transient downregulation

of CO formation. The technique is essentially the opposite of plant hybridization: a method to extract paren-

tal lines from a hybrid. The method can also be used to efficiently generate chromosome substitution lines

(CSLs). For successful reverse breeding, the two homologous chromosome sets of a heterozygous plant

must be divided over two haploid complements, which can be achieved by the suppression of meiotic CO

recombination and the subsequent production of doubled haploid plants. Here we show the feasibility of

transiently reducing CO formation using virus-induced gene silencing (VIGS) by targeting the meiotic gene

MSH5 in a wild-type heterozygote of Arabidopsis thaliana. The application of VIGS (rather than using

lengthy stable transformation) generates transgene-free offspring with the desired genetic composition: we

obtained parental lines from a wild-type heterozygous F1 in two generations. In addition, we obtained 20 (of

the 32 possible) CSLs in one experiment. Our results demonstrate that meiosis can be modulated at will in

A. thaliana to generate CSLs and parental lines rapidly for hybrid breeding. Furthermore, we illustrate how

the modification of meiosis using VIGS can open routes to develop efficient plant breeding strategies.

Keywords: meiosis, MSH5, virus-induced gene silencing, chromosome substitution lines, reverse breeding,

Arabidopsis thaliana, technical advance.

INTRODUCTION

Fuelled by the description of a variety of meiotic mutants in

plants, interest has grown for exploring the use of mutant

meiotic phenotypes for improving plant breeding strategies

(Wijnker and de Jong, 2008; D’Erfurth et al., 2009; Dirks et al.,

2009; Wijnker et al., 2012; Mieulet et al., 2016, 2018; Lambing

et al., 2017; Blary et al., 2018; Wang et al., 2019). For example,

mutations causing the increase or decrease of recombination

can be used to generate mapping populations that consist of

either high-recombinant or low-recombinant offspring (Dirks

et al., 2009; Crismani et al., 2012; Wijnker et al., 2012, 2014;

S�egu�ela-Arnaud et al., 2017; Fernandes et al., 2018; Mieulet

et al., 2018; Wijnen et al., 2018). As mutations that alter

meiotic recombination rates can adversely affect fertility
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(i.e. through defective DNA repair or the mis-segregation of

chromosomes) or may have pleiotropic effects, it would be

highly practical to be able to transiently change recombina-

tion rates in specific plants. Here, we describe the use of

virus-induced gene silencing (VIGS), a transient silencing

technique, to reduce crossover (CO) formation. This serves

to illustrate the feasibility of directing the genetic composi-

tion of offspring, but also explores its use in possible breed-

ing applications.

The interest in CO suppression for basic and applied

research lies in the possibility to generate chromosome

substitution lines (CSLs) quickly, in which one or more

chromosomes of one parent are introgressed into the back-

ground of another parent. CSLs are outstanding tools for

mapping quantitative trait loci (QTLs) in mice and Ara-

bidopsis thaliana, where they have been used to map

recombination modifiers (Nadeau et al., 2000; Singer et al.,

2004; Spiezio et al., 2012; Ziolkowski et al., 2017). In addi-

tion, the generation of a complete CSL population in

A. thaliana allowed the systematic detection of two-way

and three-way epistatic (non-additive) interactions for dif-

ferent traits (Wijnen et al., 2018).

Traditionally, CSLs are generated by crossing an F1
hybrid with one of its parents, followed by several rounds

of backcrossing, ultimately to select for offspring with

specific non-recombinant chromosomes (Nadeau et al.,

2000; Koumproglou et al., 2002). This is a labour-intensive

process that is particularly protracted in species with long

generation times. In plants, however, CSLs can be gener-

ated more efficiently when CO recombination is reduced or

completely suppressed in the hybrid (Dirks et al., 2009;

Wijnker et al., 2012). In the latter case, only non-recombi-

nant chromosomes segregate to gametes. Such haploid

gametes can be used in backcrosses or can be grown

directly into haploid offspring that carry different chromo-

some combinations of the parental lines. Haploid plants

that are derived from gametes carrying non-recombinant

chromosomes can then give rise to diploid homozygous

lines, known as doubled haploids (DHs), which are also

CSLs (Figure 1a) (Dirks et al., 2009; Wijnker et al., 2012;

Wijnen et al., 2018). Direct CO suppression in a hybrid cou-

pled with DH technology can deliver CSLs in just two gen-

erations (Figure 1a).

The generation of CSLs may have further advantages. A

breeding technique termed ‘reverse breeding’ exploits CSL

generation from a heterozygous plant to obtain parental

lines that can recreate the heterozygous genotype as an F1
hybrid (Link and Melchinger, 1995; Dirks et al., 2009; Wijn-

ker et al., 2012). In the anticipated application of reverse

breeding a favourable heterozygote is selected directly

from an outcrossing population, after which its parental

lines are generated. During reverse breeding, CSL off-

spring are generated from the selected heterozygote

through CO suppression followed by DH production. Only

a finite number of CSLs can be generated from a heterozy-

gous plant and this number equals 2x, in which x is the

x x x
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(full hybrid)
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Figure 1. Reverse breeding (heterozygote reconstruction) through partial crossover (CO) suppression and doubled haploid (DH) production in Arabidopsis thaliana.

(a) A starting A. thaliana heterozygote (top) is selected for which parental lines are to be made. Five chromosome pairs are shown, with homologs in orange and pur-

ple. Meiotic COs are partially suppressed in this heterozygote, after which pollen grains are used to pollinate the A. thaliana haploid inducer line GFP-tailswap (Ravi

and Chan, 2010) to generate haploid, and subsequently DH offspring. Example offspring are shown in themiddle row, having 0, 1 or 2 COs (DH0, DH1 and DH2, respec-

tively). Note that DH0 plants are also chromosome substitution lines (CSLs). Crossing complementing DH0 (left) recreates the heterozygote as a full hybrid (bottom

row, left), an approach similar to that described by Wijnker et al. (2012). Crossing DH0 with DH1 (middle) or DH1 with DH2 (right) generates near-full hybrids 1 and 2,

which have small homozygous genomic regions. Note that in the cross of DH1 with a DH2, chromosome 1 is largely heterozygous, as the parental lines complement

one another in the distal chromosome region. (b) Recombinant but also non-recombinant chromatids segregate in the presence of a CO. Detail of a bivalent pair with

onemeiotic CO is shown (left). Only two of the four resulting chromatids are recombinant (right).
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haploid chromosome number of the species. In reverse

breeding, CSLs are generated until a so-called ‘comple-

menting’ pair of lines is found: two CSLs that, when

crossed, reconstitute the starting heterozygote (Figure 1a).

Reverse breeding was shown to be practically feasible in a

proof-of-concept study (Wijnker et al., 2012), but the

approach presented two main drawbacks: complete CO

suppression induced semi-sterility and the downregulation

of CO recombination in a plant required the use of a stable

transgene. These points are addressed in more detail in

the following sections.

Partial versus complete CO suppression

The suppression of COs may come at a cost because this

can compromise plant fertility. This was illustrated by

Wijnker et al. (2012) who induced complete CO suppres-

sion through the RNA interference (RNAi)-mediated knock-

down of the essential meiotic recombinase DISRUPTED

MEIOTIC cDNA 1 (DMC1) in an F1 of A. thaliana (Wijnker

et al., 2012). The knock-down of DMC1 caused non-recom-

binant (univalent) chromosomes to randomly segregate to

gametes, leading to high aneuploidy through the mis-seg-

regation of chromosomes. Consequently, balanced game-

tes were only formed at a low incidence in A. thaliana

(about 3%), but this frequency would be much lower in

other species when more chromosome pairs segregate

randomly (Dirks et al., 2009). Therefore, complete CO sup-

pression will present a strong bottleneck for the generation

of reverse-breeding offspring, especially in species with a

high chromosome number, including various crops. A pos-

sible alternative may lie in reducing CO formation rather

than completely suppressing it (Dirks et al., 2009). Reduc-

ing CO formation will still lead to the recovery of spores

without CO events (CSLs), but also to spores with low CO

numbers (Figure 1). This would not only be useful for the

generation of CSLs through backcross schemes but also

benefits reverse breeding.

The recreation of a heterozygous genotype (hereafter

referred to as a full hybrid) is only possible if the two

reverse-breeding offspring that form the parental pair (i.e.

two CSLs) have perfectly complementing genotypes (Fig-

ure 1a). If one of the two genotypes in the pair experi-

enced a CO the resulting hybrid will be similar, but not

genetically identical, to the full hybrid. For this reason, we

refer to these plants as near-full hybrids. As a result of a

CO, near-full hybrids will show a ‘decrease in heterozy-

gosity’ (Figure 1a). This particular decrease of heterozy-

gosity may not affect the phenotype of the near-full

hybrid, as compared with the full hybrid, however; it will

only be detrimental if the particular regions that become

homozygous affect hybrid performance (Huang et al.,

2015). Therefore, it can be expected that several low-re-

combinant offspring can be used as parental lines for

hybrid breeding. Despite not knowing beforehand which

homozygous regions affect hybrid performance, this can

be determined experimentally by phenotyping a number

of near-full hybrids. If through incomplete CO suppression

one can obtain parental lines that generate hybrids that

are phenotypically identical to full hybrids, reverse breed-

ing in species with higher chromosome numbers may

become feasible.

Achieving the partial suppression of CO recombination

in plants is possible because of the presence of two inde-

pendent CO pathways (Higgins et al., 2004; Mercier et al.,

2005). One of these is the ZMM protein pathway that,

through the action of the heterodimer formed by MUTS

HOMOLOG 4 and 5 (MSH4–MSH5) and other meiotic pro-

teins, generates about 80–87% of the total number of COs,

known as class-I COs (Higgins et al., 2004; Mercier et al.,

2005). The ZMM proteins are required during prophase I

for the stabilization of recombination intermediates, and

the disruption of this pathway by the loss of function of

proteins like MSH4 or MSH5 results in the elimination of

class-I COs. Indeed, msh4 and msh5 mutants show on

average 1.2 and 1.6 chiasmata per cell during meiosis,

respectively, versus the nine to 10 chiasmata formed in

wild-type meiosis (Higgins et al., 2004, 2008; Wijnker et al.,

2019). Therefore, in the event that either MSH4 or MSH5 is

non-functional, recombinant and non-recombinant chro-

mosomes will segregate at meiosis and both viable and

non-viable gametes will be formed (Higgins et al., 2004; Lu

et al., 2008).

VIGS to downregulate meiotic genes in A. thaliana

In its former design, reverse breeding was achieved by the

RNAi-mediated suppression of CO formation, which

required the presence of a stable transgene in the genome

of the heterozygote used to generate CSLs (Wijnker et al.,

2012). For this transgene to be present in the heterozygote,

one of the parental lines was stably transformed and used

in a cross to give rise to an achiasmatic hybrid. When

reverse breeding is to be applied to heterozygotes chosen

from outcrossing populations, this approach would be

unfeasible because no parental lines are available. To over-

come this problem, meiotic recombination can be sup-

pressed by using a transient silencing technique like VIGS,

in which a plant is inoculated with a modified virus carry-

ing a plant sequence that causes the silencing of the target

gene of interest. Thanks to the development of a large

repertoire of viral systems, VIGS has been routinely

exploited in several plant species to modify the expression

of genes involved in a wide number of processes, includ-

ing meiosis (Senthil-Kumar and Mysore, 2011b; Bennypaul

et al., 2012; Bhullar et al., 2014). One of the most com-

monly used VIGS systems is based on the positive single-

stranded RNA tobacco rattle virus (TRV), which has been

effectively applied in Zea mays (maize), Papaver som-

niferum (poppy), Solanum spp., Nicotiana tabacum

© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,
The Plant Journal, (2020), doi: 10.1111/tpj.14990

Modification of meiosis using VIGS 3



(tobacco) and A. thaliana (Liu et al., 2002a,b; Brigneti et al.,

2004; Hileman et al., 2005; Burch-Smith et al., 2006;

Senthil-Kumar and Mysore, 2011b; Zhang et al., 2013).

The TRV-VIGS system consists of a bipartite viral gen-

ome encoded on two vectors: TRV1 and TRV2. TRV1 is nec-

essary for the replication and movement of the virus

whereas TRV2 encodes the coat protein and other non-

structural proteins and harbours a cloned fragment of the

plant target sequence (Ratcliff et al., 2001; Burch-Smith

et al., 2004). Agrobacterium tumefaciens-mediated co-inoc-

ulation followed by plant cell transformation and co-ex-

pression of the TRV1 and TRV2 vectors in the plant leads

to the formation of an active RNA virus. The viral replica-

tion process generates double-stranded RNA (dsRNA)

molecules that trigger an immune response through the

activation of the RNA-induced silencing complex (RISC)

(Ruiz et al., 1998; Hamilton and Baulcombe, 1999; Baul-

combe, 2004). The dsRNAs generated are initially pro-

cessed into small-interfering RNA (siRNA) molecules and

then loaded into RISC. Sequences homologous to the siR-

NAs will be recognized as components of the viral gen-

ome, which ultimately causes the cleavage of both the

viral as well as the endogenous mRNA target (Robertson,

2004; Kalantidis et al., 2008; Unver and Budak, 2009; Becker

and Lange, 2010).

We tested whether COs can be efficiently reduced using

TRV-VIGS to silence MSH5 in a wild-type F1 A. thaliana

hybrid. As TRV transmission to the offspring has been

reported in Solanum lycopersicum (tomato) and Nicotiana

benthamiana in low rates (10–15%), but not in A. thaliana

(Senthil-Kumar and Mysore, 2011a), VIGS-mediated tran-

sient suppression of CO formation would allow the recov-

ery of fully fertile, transgene-free DH offspring from a

reverse-breeding experiment. These offspring will result

from gametes carrying non-recombinant (CSLs) and low-

recombinant chromosomes. In addition, we tested whether

the DH lines generated could be used to: (i) restore the

starting hybrid genotype and/or phenotype; and (ii) gener-

ate a population of near-full hybrids in which we could

experimentally test how hybrid performance is affected by

the presence of certain homozygous regions across the

genome.

RESULTS

Testing VIGS to modify meiosis

We first asked whether TRV could potentially target genes

expressed in floral tissues and whether TRV affects plant

fertility. To this end we exploited a commonly used posi-

tive control for VIGS experiments: a TRV vector targeting

the gene PHYTOENE DESATURASE (PDS). The PDS protein

is required in the chlorophyll biosynthesis pathway and its

silencing results in strong photobleaching of plant tissues

(Burch-Smith et al., 2006). Four 3-week-old Col-0 wild-type

plants were inoculated with TRV-PDS and about 10–
12 days after inoculation we observed the incipient signs

of photobleaching in the developing young rosette leaves.

White flower buds developed on all inoculated plants

about 4 weeks after inoculation (Figure S1). These results

suggest the possibility to target genes in meiotic tissues in

A. thaliana using VIGS.

Previous studies that used the TRV-VIGS system have

reported mild or the absence of disease symptoms in

A. thaliana (Burch-Smith et al., 2006). Nonetheless, we

decided to test whether TRV itself might compromise

plant fertility and could affect silique elongation: pheno-

types that could be mistaken for meiotic CO mutant phe-

notypes in A. thaliana. To this end we inoculated five

Col-0 plants with TRV containing an inactive short frag-

ment of the GUS reporter gene system (Tameling and

Baulcombe, 2007; Lu et al., 2008; Wu et al., 2011). We

then checked whether TRV could be detected by reverse

transcription polymerase chain reaction (RT-PCR) in

flower buds of Col-0::TRV-GUS plants. For this purpose

we designed primers to detect the RNA polymerase

encoded by TRV1. RT-PCR confirmed the presence of

TRV1 in Col-0::TRV-GUS, whereas no obvious amplicons

were found in Col-0 wild-type control samples grown

under the same conditions (Figure S2).

We then evaluated silique development in Col-0::TRV-

GUS plants and observed that short siliques were not

formed on TRV-GUS-treated plants (Figure S1). For cer-

tainty, we checked whether the viable seed set was

reduced in elongated siliques. We counted the number of

seeds in 10 random siliques from the main and lateral

branches in three of these plants (Data S1). The lowest

numbers of viable seeds in siliques of Col-0::TRV-GUS

were 42, 45 and 46, which were never lower than the low-

est viable seed set (22 seeds) found in Col-0 control plants

(Data S1). We therefore concluded that TRV does not affect

plant fertility. For this reason, we used non-inoculated

plants (instead of Col-0::TRV-GUS) as controls in further

experiments.

VIGS-mediated downregulation of MSH5 causes semi-

sterility

Mutants of mutS homolog 5 (msh5) are semi-sterile and

we therefore expected the VIGS-mediated silencing of

MSH5 to result in a low seed set in treated plants (Lu et al.,

2008). To test this, we generated a TRV2 vector carrying a

sequence identical to a 242-bp fragment of A. thaliana

MSH5, spanning exon 4 to exon 7, and common to the

three annotated splicing variants of MSH5 found in

https://plants.ensembl.org/index.html. The fragment was

amplified from cDNA and cloned into TRV2 and confirmed

by Sanger sequencing. We then used the TRV-MSH5 con-

struct generated to inoculate four 3-week old Col-0 wild-

type plants.

© 2020 The Authors.
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To test for the presence of TRV in floral tissues, we

assessed TRV1 expression through RT-PCR in flower buds

of treated and non-treated plants. We confirmed TRV1

expression in treated plants but TRV1 could not be

detected in control plants (Figure S2). To test for the pres-

ence of active TRV2, we designed primers that could

amplify the MSH5 region cloned into TRV-MSH5 and per-

formed quantitative RT-PCR (qRT-PCR). For comparison,

we used two reference genes At4G26410 and At3G47060

(see Experimental procedures). These analyses showed

that MSH5 expression in treated plants was 100–900-fold
higher compared with wild-type controls. The high levels

of MSH5 expression in treated plants can be logically

explained by the presence of the active TRV-MSH5 virus in

flower buds (Liu et al., 2002a,b), whereas the low MSH5

levels detected in controls corresponds to the expression

of endogenous MSH5 (Figure S2).

To test whether TRV-MSH5 could induce a reduction of

endogenous MSH5 transcripts, we designed primers bind-

ing outside the MSH5 region cloned into TRV2, and

checked the MSH5 expression level in Col-0::TRV-MSH5

and Col-0 wild-type controls. As MSH5 expression is

restricted to meiocytes (Lu et al., 2008), we also assessed

in our samples the relative expression of another meiotic

gene, REC8, a meiosis-specific a-kleisin subunit of the

cohesin complex (Cai et al., 2003). We found that the

expression levels of both MSH5 and REC8 showed a large

variation of approximately two- to threefold among the

untreated control samples when either of the two reference

genes was used. This high variation hinders the possibility

to faithfully compare MSH5 and REC8 expression between

treated and untreated samples. Nonetheless, we did

observe that the highest MSH5 expression in treated plants

was never higher than the lowest MSH5 expression in Col-

0 controls (Figure S2). High variability in MSH5 expression

in control samples prohibits the clear quantification of the

extent to which MSH5 expression is downregulated in trea-

ted plants, however.

To assess the impact on fertility phenotypically in plants

treated with TRV-MSH5, we compared the silique lengths

of Col-0::TRV-MSH5 and control plants. We observed that

the treated plants displayed a number of very short

siliques at the base of the main inflorescence, whereas

non-inoculated Col-0 wild-type controls showed long, well-

elongated siliques (Figure 2a,b). Also, the first developing

siliques on the lateral branches were very short in treated

plants, contrasting with the long siliques found on control

plants (Figure 2a). These results indicate that growth con-

ditions did not cause the semi-sterile phenotype observed

in treated plants and that Col-0::TRV-MSH5 plants clearly

display a reduction of silique length in comparison with

control lines.

To determine to what extent this reduced length repre-

sented a decrease in the seed set of treated plants, we

quantified the number of viable seeds in the first six sili-

ques on the main inflorescence in treated and control

plants. The median number of seeds per silique was 44

in control plants (average = 45, SD = 12) whereas TRV-

MSH5-treated plants had a median value of two seeds

per silique (average = 11, SD = 17), highlighting a signifi-

cant reduction in seed set (Student’s t-test, a = 0.05;

P < 0.01; Figure 2b,c; Data S1). Seed set was highly vari-

able both within as well as between four TRV-MSH5-trea-

ted plants: the most extreme reduction was to an average

of 0.3 seeds per silique (SD = 0.7) in plant P1, but ranged

to an average of 19.8 (SD = 21) seeds per silique in the

first six siliques in plant P2 (Figure 2c; Data S1). We con-

cluded that TRV-MSH5 can induce a strong reduction in

seed set, similar as described for msh5 mutants (Lu et al.,

2008), but phenotypic variation exists within and among

treated plants.

The random segregation of univalent chromosomes in

msh5 mutants leads to aneuploidy among gametes and

causes pollen abortion. We therefore characterized pollen

abortion rates in four TRV-MSH5-treated Col-0 plants and

four non-treated Col-0 control plants. The number of dead

pollen per 100 pollen grains was recorded in flowers on

the main inflorescence for six consecutive days, starting

from the moment in which the first flowers opened

(32 days after inoculation) (Figure 3). Pollen abortion in

control plants averaged at 1.3 per 100 pollen (1.3%), and

was consistently below 5% in all but two of the flowers

examined (n = 47, SD = 2.9; Figure 3; Data S1). By con-

trast, the average pollen abortion in Col-0::TRV-MSH5

plants was higher at 21.9 per 100 pollen measured over all

flowers (n = 80, SD = 20.9; Figure 3; Data S1). The compar-

ison of pollen abortion distributions between treated and

wild-type plants indicates that three out of four treated

plants show a significantly higher pollen abortion rate than

control plants (Kolmogorov–Smirnov test, one sided,

alpha = 0.05).

To test whether such rates were comparable with

mutants with a dysfunctional class-I CO pathway, we used

msh4�/� mutant plants as a control. The msh4 mutants

had an average abortion rate of 40.3% and was rather con-

stant, with a small standard deviation of 5.4 (n = 9 flowers)

(Figure 3; Data S1). Pollen abortion rates in the flowers of

treated plants was on average lower, with higher variation.

Of 80 flowers that were counted over the first 6 days of

flowering, 74% showed pollen abortion rates of lower than

40.3%, and 26.0% showed a higher pollen abortion rate.

Two plants had low averages of pollen abortion of 6.0%

(SD = 11.6) and 8.3% (SD = 11.6), of which only one (out of

seven) and five (out of 25) flowers showed more than 5%

pollen abortion, respectively. Two plants showed higher

levels of pollen abortion of 32.8% (SD = 19.2) and 30.4%

(SD = 19.1), in which 17 (out of 18) and 27 (out of 30) flow-

ers showed pollen abortion above 5% (Figure 3; Data S1).

© 2020 The Authors.
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Our results demonstrate that TRV-MSH5 induces pollen

abortion in treated plants, but the silencing phenotype is

very variable. As for our seed set data, we observed that

there is considerable variation between plants and

between flowers within treated plants, suggesting that the

silencing effect of TRV-MSH5 is not fully penetrant.
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TRV-MSH5 induces univalent segregation during meiosis

in A. thaliana F1 hybrids

The cause of semi-sterility in msh5�/� is the loss of class-I

COs and the random segregation of univalent chromo-

somes at the first meiotic division. To assess directly

whether the observed semi-sterility in our experiments has

a similar cause, one would expect to observe a meiotic phe-

notype in TRV-MSH5 as described for the msh5 mutant. In

msh5�/�, univalents and bivalents are present from late

diplotene to metaphase I. The visible consequences of uni-

valent segregation in later meiotic stages are the appear-

ance of unbalanced chromosome numbers in daughter cells

(b)

(a)

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 msh4
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msh4Col-0

Pollen abortion frequencies in Col-0, Col-0::TRV-MSH5 and msh4 plants

Col-0Col-0::TRV-MSH5
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Figure 3. Pollen abortion in Col-0 wild-type, Col-0::TRV-MSH5 and msh4 plants. (a) The graph represents differences in pollen abortion rates during six consecu-

tive days between flowers of four Col-0 controls (n = 47), four Col-0::TRV-MSH5 plants (n = 80) plus three msh4 plants (n = 9), used for comparison. (b) Images

of pollen stained with Alexander’s staining solution show viable pollen (magenta) produced by a Col-0 wild-type plant, whereas high numbers of aborted pollen

(blue) are produced by msh4 and Col-0::TRV-MSH5 plants (scale bar: 1 mm).
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and polyad formation (Lu et al., 2008). As the phenotypic

effects (i.e. reduced silique elongation and high pollen abor-

tion) of inoculation with TRV-MSH5 were strongest in the

first opening flowers, we sampled the first developing

flower buds in a subsequent experiment for the generation

of meiotic cell spreads. As meiosis precedes flower opening

by approximately 7–9 days in A. thaliana (Liu et al., 2018),

we sampled flower material 8 days before the anticipated

opening of the first flowers (i.e. 3 weeks post-inoculation).

Flower buds were cut from developing rosettes of TRV-

MSH5-treated F1 (Landsberg erecta 9 Columbia-0, hereafter

Ler and Col-0, respectively) hybrid plants and buds of

appropriate size (0.6 mm) were selected for slide prepara-

tion.

We obtained 10 slides (each of one flower bud) in mei-

otic stages from late diplotene to tetrad stages and anal-

ysed chromosome segregation in 206 meiotic cells

(Table 1). Seven slides showed meiotic stages consistent

with wild-type meiotic phenotypes: the presence of five

bivalents at late prophase (late diplotene to metaphase I)

and cells in later meiotic stages (anaphase I to tetrad) in

which balanced chromosome numbers suggest the occur-

rence of regular disjunction at the preceding metaphase I.

In two slides we observed distinctly different meiotic pro-

phase phenotypes: meiotic cells show low numbers of

bivalents per cell (0.6 bivalents on average, SD = 0.7,

n = 17 metaphase-I cells), and in all 38 late diplotene to

metaphase-I cells in which individual chromosomes could

be observed we noted the presence of univalents (Table 1).

Later meiotic stages on these slides, as well as cells in a

third slide, showed aberrant chromosome numbers in

daughter cells and the formation of polyads instead of tet-

rads after meiosis (Figure 4). These observations confirm

that TRV-MSH5-treated plants show a phenotype similar to

the msh5 mutant: strongly reduced CO formation and uni-

valent segregation resulting in unbalanced chromosome

numbers in gametes that leads to semi-sterility. The

reported average bivalent frequency for Atmsh5-1 is 1.09

bivalents per cell (Higgins et al., 2008), which is higher but

in the range of what we observed. We conclude that the

poor seed set and low pollen viability observed in TRV-

MSH5-inoculated plants probably results from unbalanced

chromosome segregation during metaphase I.

Downregulation of MSH5 using VIGS changes the genetic

composition of the offspring

To evaluate the feasibility of crossing with gametes result-

ing from the VIGS-mediated reduction of recombination,

we inoculated a total of 109 (52 + 42 +15) F1 Ler 9 Col-0

plants with TRV-MSH5 in three consecutive experiments to

use in crosses. When plants started flowering, we tested

the successful knock-down of MSH5 in F1 flowers before

crossing by assessing pollen abortion rates in one of the

anthers of each flower. We also tested pollen produced by

three non-inoculated plants, which remained viable

throughout the crossing periods. Of these experiments we

Table 1 Quantification of bivalent frequencies and meiotic aberrations in meiotic cells from 10 different flower buds in TRV-MSH5-inocu-
lated F1 hybrids

Sample

Number of bivalents

Cells with univalents

Anaphase I to tetrad
stage

n5 4 3 2 1 0 Regular Irregular

L004 – – – – – – – 1 3 4
L011 18 – – – – – – 4 – 22
L014 – – – – 1 2 3 – 7 10
L027 11 – – – – – – 5 – 16
L028 24 – – – – – – 8 – 32
L030 9 – – – – – – 8 – 17
L031 3 – – – – – – 8 – 11
L032 35 – – – – – – 2 – 37
L033 6 – – – – – – 4 – 10
L034 – – – 3 4 8 35a 5 7 47

Each sample represents a slide with a spread of meiotic cells that stem from one flower bud. Slides were selected for showing meiotic
stages ranging from late diplotene to tetrad stage. Bivalent numbers and the presence of univalents were quantified in cells at late diplo-
tene, diakinesis and metaphase I. Regularity of chromosome segregation in later meiotic stages (from anaphase I to tetrad stage) was
judged by the regular distribution of segregated chromosomes (from anaphase I to telophase) and nuclear size and number (in tetrad-stage
cells). Most slides show phenotypes exclusively consistent with wild-type meiosis: the presence of five bivalents, no univalents and regular
distribution of chromosomes during late meiotic stages. Slides L004, L014 and L034 show aberrant numbers of bivalents, high numbers of
cells with univalents as well as later meiotic stages, with evidence of the mis-segregation of chromosomes.
aThe number of ‘cells with univalents’ for slide L034 is higher than the summation of the numbers in the preceding columns. The reason for
this is that we occasionally observed cells in late meiotic prophase (late diplotene) with clear univalents but in which the number of biva-
lents could not be determined.

© 2020 The Authors.
The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd,

The Plant Journal, (2020), doi: 10.1111/tpj.14990

8 Vanesa Calvo-Baltan�as et al.



selected 27, 19 and 15 plants that showed high pollen

abortion rates, indicative of a successful silencing of MSH5

expression. Of these plants, 132, 77 and 60 flowers, respec-

tively, were used to pollinate GFP-tailswap, a haploid indu-

cer line for A. thaliana (Ravi and Chan, 2010). The haploid

offspring generated were left for self-fertilization to give

rise to 111 diploid DH offspring that were then genotyped

for 42 kompetitive allele-specific PCR (KASP) markers

(Semagn et al., 2014) evenly spaced over the genome (Fig-

ure S3; Data S2). Simultaneously, we generated a control

population to assess the recombination rate in male meio-

sis by backcrossing wild-type non-inoculated F1 hybrids to

a male sterile 1 (ms1�/�) mutant of Ler (hereafter we refer

to this population as BC1).

Among the 111 DH offspring, we identified 24 DHs (20

different genotypes) with no detectable recombinant chro-

mosomes (Data S2). These lines most likely carry non-re-

combinant chromosomes, but with our marker set we

cannot exclude the possibility of distal COs having

occurred on chromosomes. These lines are henceforth

referred to as DH0 to differentiate these offspring from

other DHs (with detectable CO) in the following section.

The population is significantly enriched for DH0 lines (i.e.

derived from gametes without detectable COs) when com-

pared with our BC1 control population of 85 plants (Kol-

mogorov–Smirnov test, a = 0.01; Figure 5a). Among these

20 DH0 genotypes we identified six complementing paren-

tal pairs that, when crossed, would recreate the starting

hybrid (Data S2). All DH offspring in our population devel-

oped normally and were fully fertile. This shows that VIGS

can transiently modify meiotic recombination in a wild-

type hybrid and change the genetic make-up of the off-

spring derived from that hybrid.

Recreation of hybrid genotypes and phenotypes using

reverse-breeding offspring

For the exact recreation of the heterozygous genotype a

complementary DH0 pair is required, but in breeding prac-

tice the recreation of the hybrid phenotype will be the ulti-

mate goal. The use of a DH1 (i.e. a DH with one detected

recombinant chromosome) in a cross to recreate a hybrid

leads to a decrease of heterozygosity (DOH) in the reconsti-

tuted hybrid distal to the CO position (Figure 1). We

hypothesized that only a DOH that negatively affects the

hybrid phenotype is of concern for reverse breeding. In our

offspring we identified 19 DH1s and 12 DH2s, with one and

two detected COs per genome, respectively, with the

remainder of 56 DHs having between three and eight COs

detected, which is in the range of wild-type meiosis and

probably results from the incomplete penetrance of VIGS

(Data S2). Depending on CO positions in the DH1 and DH2

offspring, we noted the possibility of identifying four addi-

tional parental pairs (of DH0 with DH1) in which a near-full

hybrid would show a DOH that was less than 2.5% of the

total genome length. Seven parental pairs would give rise

to near-full hybrids in which DOH is <5%. In one parental
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Figure 4. Meiotic cell complements of TRV-MSH5-treated F1 hybrid plants show phenotypes consistent with reduced crossover (CO) formation. Phenotypes con-
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pair (DH1 line 44 9 DH2 line 41) a DOH due to a CO on

chromosome 1 in one parental line was partly compen-

sated for by a CO event on the same chromosome in the

other parent. This is similar to the DH1 9 DH2 cross that

was illustrated in Figure 1(a) and generated a near-full

hybrid with a DOH of 4.17% (Data S2).

The phenotypic impact of DOH can be explored experi-

mentally. We therefore crossed different DH lines to create

near-full hybrids with increasing levels of DOH ranging

from 1.28 to 32.07% (Data S2). These were grown together

with the starting heterozygote and full hybrids (recreated

heterozygotes), and then standard growth parameters were

compared: flowering time (FT), main stem length (MSL),

rosette diameter (RD) and dry weight (DW) at flowering

time. No significant differences were found between the

starting hybrid and the two recreated full hybrids (one-way

analysis of variance, ANOVA: FT, P = 0.3015; MSL,

P = 0.9347; RD, P = 0.8655; DW, P = 0.2697; Figures 5 and

S4). Also, no significant differences between the full hybrid

and the near-full hybrids were found, with the exception of

one: a near-full hybrid (NFH3) that has a similar short stem

length as one of its parental lines (Figure 5b), which is

likely to be caused by homozygosity of the main effect

erecta locus that is homozygous in this specific hybrid

(Stinchcombe et al., 2009). Interestingly, hybrids with the

highest DOH (i.e. NFH4, NFH5, NFH7 and NFH10 with DOH

of 32.07, 28,08, 31,03 and 21.46 respectively) do not display

a reduced main stem length (Figure 5b, Data S2).

DISCUSSION

Here we described that VIGS can be used to downregulate

the expression of a meiotic gene (MSH5) in A. thaliana.

The A. thaliana msh5 mutant shows a desynaptic pheno-

type in which mainly univalent chromosome pairs segre-

gate during the first meiotic division, leading to reduced

fertility. TRV-MSH5-treated plants showed a similar semi-

sterile phenotype with a strongly reduced seed set, high

levels of pollen abortion in flowers, the appearance of uni-

valents after meiotic prophase and the presence of unbal-

anced chromosome numbers in meiotic spores. It was

evident, however, that the semi-sterility phenotype showed

great variation between flowers in the same plant, and also

between plants, consistent with the incomplete penetrance

of VIGS silencing in A. thaliana reported previously (Burch-

Smith et al., 2006). In spite of this incomplete penetrance,

we were able to generate offspring from TRV-MSH5-inocu-

lated hybrid plants that showed no COs or were signifi-

cantly reduced in CO numbers.

Control experiments detecting TRV1 and TRV2 expres-

sion through RT-PCR and qRT-PCR, respectively, on flower

buds showed that TRV-MSH5 was strongly expressed in

treated plants. Only TRV-MSH5 induced a semi-sterile phe-

notype as plants expressing TRV-GUS neither developed

short siliques nor produced low numbers of viable seeds.

Testing whether TRV-MSH5 expression also induced a cor-

responding decrease in endogenous MSH5 was not suc-

cessful, however. There may be several reasons for this.

Throughout, we have shown that the penetrance of an

MSH5-silencing phenotype is incomplete and highly vari-

able. The inflorescences tested are likely to have contained

both silenced and non-silenced cells, and possibly the non-

silenced cells introduce significant variation that preclude

us from accurately assessing the downregulation of MSH5

by qRT-PCR. The observation that silencing occurs mainly

in the first developing flowers, deep within the developing

rosette, further complicates the timing of harvest. There-

fore, for more detailed analyses of the silencing of meiotic

genes by VIGS, flower bud staging and the use of a visual

marker coupled with viral expression (i.e. TRV-GFP) (Tian

et al., 2014) could be considered. Possibly, one might study

the silencing of fluorophore-tagged proteins directly in

anthers using live imaging of meiosis (Prusicki et al., 2019).

In comparison with a previously published proof of con-

cept for reverse breeding (Wijnker et al., 2012, 2014), the

execution of reverse breeding is here greatly simplified

and improved. The proof of concept made use of a spe-

cially designed transgenic hybrid expressing a dominant

acting RNAi transgene to suppress CO formation. Conse-

quently, five generations were required to obtain CSLs

from a hybrid and six generations were required to com-

plete reverse breeding: three to create a transgenic hybrid,

and three to recreate it (Wijnker et al., 2014). By contrast,

the current experiment required just two generations to

generate CSLs from a hybrid plant and three generations

in total to recreate a heterozygote as F1 seeds (Figure 1).

Furthermore, all offspring recovered in this experiment are

transgene-free and fertile, whereas in the previous set-up

half of the offspring were transgenic and semi-sterile,

which implies a twofold increase in efficiency.

In our experiments we targeted MSH5 rather than DMC1,

as was done in the previous design, to reduce CO formation.

Through this approach we obtained a DH population that

was strongly enriched for plants in which we detected 0, 1

and 2 COs per genome. We obtained 20 of the possible 32

CSLs among our offspring, and we could use these lines to

recreate the starting hybrid. Clearly, reverse breeding (i.e.

obtaining complementing DH0) was feasible through partial

CO suppression. As partial CO suppression also leads to the

recovery of DH1 and DH2, we also wondered whether these

could be used to recreate the starting hybrid. Crossing DH

lines with CO events (i.e. DH1 and DH2) precluded the exact

recreation of the genotype of the starting hybrid, but it

allowed us to test whether a DOH would negatively impact

the phenotype of the recreated F1. Our data suggest that a

DOH will in some cases affect the F1 phenotype, but in other

cases will not. This implies that DH1 and DH2 may be suit-

able breeding lines to recreate the hybrid phenotype follow-

ing a reverse-breeding experiment.
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It is possible to estimate the expected DOH in near-full

hybrids resulting from a single CO. Arabidopsis thaliana

has five linkage groups (chromosomes). One CO in the

genome of a DH line recombines one linkage group (one-

fifth of the genome) and this CO exchanges anything

between zero and 50% of the linkage group, which aver-

ages at one-quarter of the linkage group (typically half a

chromosome arm). The expected DOH caused by a single

CO thus equals on average 1/4*1/5 (5%) of the total linkage

map length. Of the ten near-full hybrids (with one CO) that

we could produce, five have a DOH of less than 5% in

Mbp. This is exactly as predicted, as the A. thaliana genetic

map correlates well with the physical chromosome length.

The more chromosomes that a species has, the lower the

relative DOH resulting from one CO. In a species with 10

chromosome pairs (e.g. maize), one CO on a chromosome

causes a DOH of 2.5%. This decreases even further when,

as in many species, COs are located relatively distally on

chromosomes. Under such a scenario, not only DH0 but

also DH1 and DH2 may prove worthy parental lines, pro-

vided that the resulting near-full hybrids are phenotyped to

assess their performance.

The complete experimental procedure showed the feasi-

bility of using VIGS to transiently modify meiotic recombi-

nation in order to change the genetic composition of

gametes. Two previous reports demonstrated the effi-

ciency of a VIGS system (based on the barley stripe mosaic

virus, BSMV) to reduce the expression of DMC1 by 75–80%
and C-Ph1 by 78.17% in Triticum aestivum (wheat) (Benny-

paul et al., 2012; Bhullar et al., 2014). Having shown that, at

least in A. thaliana, the modified composition of spores

can give rise to offspring with altered characteristics opens

up routes to also alter other meiotic processes, and use

VIGS to increase recombination frequencies, for example

(Fernandes et al., 2017).

The experiments in wheat suggest that VIGS-mediated

silencing of meiotic genes can be used to develop breed-

ing strategies in other species too, although the most

appropriate VIGS system will need to be considered for

each particular case. For instance, VIGS based on BSMV

has also been used successfully in Secale cereale (rye),

Brachypodium spp., Hordeum vulgare (barley) and maize

(Holzberg et al., 2002; Bruun-Rasmussen et al., 2007; Pacak

et al., 2010; Bennypaul et al., 2012; Groszyk et al., 2017),

and VIGS based on turnip yellow mosaic virus (TYMV) has

been exploited in Brassica rapa (Yu et al., 2018). VIGS to

modify meiosis can be especially suitable for polyploids.

Silencing efficiency is not influenced by gene copy number

and it has even been proposed as a tool to downregulate

entire gene families (Senthil-Kumar and Mysore, 2011a;

Fitzgerald et al., 2012). Indeed, several works have shown

that VIGS can be efficiently applied in polyploids like wheat

(Fitzgerald et al., 2012; Manmathan et al., 2013), Solanum

tuberosum (potato; Brigneti et al., 2004; Faivre-Rampant

et al., 2004), Brassica napus (�Alvarez-Venegas et al., 2010)

and Gossypium barbadense (cotton; Pang et al., 2013).

Potential application of reverse breeding in other species

The feasibility of generating CSLs and the application of

reverse breeding in other species should be evaluated in a

case-by-case scenario. Apart from the VIGS system to be

used, the chromosome number of the species may greatly

impact the chances of obtaining viable offspring after

reducing CO frequencies in breeding schemes. When CO

suppression leads to the segregation of univalent pairs,

the chance of recovering a balanced gamete is a direct

function of the number of univalent pairs, and equals 1/2x,

where x is the number of univalent chromosome pairs.

Gamete viability exponentially decreases when univalent

pairs increase. With this study, we have shown that CO

suppression can be incomplete in order to increase the

chance of obtaining gametes carrying non-recombinant

chromosomes only.

In a crop like maize (x = 10), the total absence of COs

will yield a frequency of viable gametes that equals 1/

210 = 0.09%. Reported CO numbers in wild-type maize vary

from 20.5 to 38 per meiosis (Anderson et al., 2003; Li et al.,

2015), so the suppression of class-I COs, assuming an 87%

decrease in COs, would result in three or six residual COs

per meiosis and frequencies of viable gametes that equal

1/2(10 � 3) (0.8%) and 1/2(10 � 6) (6%), respectively. These

frequencies represent an increase in fertility of between

eight- and 66-fold in comparison with complete CO sup-

pression. Of the resulting gametes, 1/8th and 1/66th would

directly generate CSLs if used for DH production.

The frequency of recovered reverse-breeding offspring

can also be heightened thanks to the development of more

efficient haploid induction lines and/or tissue culture tech-

niques. In recent years, haploid and DH production rates

have increased in crops such as Oryza sativa (rice), barley,

Brassica rapa or maize (Britt and Kuppu, 2016; Ishii et al.,

2016; Kelliher et al., 2017; Naik et al., 2017; Ren et al., 2017;

Yao et al., 2018; Jia et al., 2019). We anticipate that the

development of transient silencing techniques for meiosis

coupled with high rates of DH production will facilitate the

application of reverse breeding-like technologies in breed-

ing set-ups.

EXPERIMENTAL PROCEDURES

Plant material and growth

Arabidopsis thaliana plants used in crosses and for VIGS inocula-
tion were grown in potting soil in growth chambers (Percival,
https://www.percival-scientific.com) with a 21/18°C and 16-h light/
8-h dark cycle, with 50–60% relative humidity. Haploid offspring
were grown under similar conditions in a glasshouse. For pheno-
typing, seeds of DH offspring, F1 hybrids, reconstituted full
hybrids and near-full hybrids were vernalized by sowing on wet
filter paper and placing them in the dark at 4°C for 4 days to
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ensure uniform germination. Plants were grown on 4 cm 9 4 cm
rockwool blocks and watered with a flooding system with a Hypo-
nex nutrient solution three times per week in a randomized block
design with five blocks and two replicates per genotype in each
block. The climate chamber conditions were set to a cycle of 16-h
light (125 µmol m�2 sec�1)/8-h dark and 20/18°C, with 70% relative
humidity. Arabidopsis thaliana accession numbers: Ler-1 (stock
number CS76164; ABRC, https://abrc.osu.edu) and Col-0 (stock
number CS76113; ABRC).

Plasmid construction and Agrobacterium inoculation

To generate TRV-MSH5, we extracted RNA from Col-0 flower buds
and used this to synthesize cDNA using the RevertAid RT Kit
(ThermoFisher Scientific, https://www.thermofisher.com). A region
of 242 bp homologous to MSH5 was amplified from this cDNA
using primers to which BamHI (forward) and XbaI (reverse) restric-
tion sites were added. The PCR product was obtained using
the primer pair MSH5_Fw_, 50-CAGGATCCAAGCCATCGATCATT
TACGC-30, and MSH5_Rw_, 50-CATCTAGAACTTGGACTTCACTGC
CCAC-30. The PCR product was introduced into the vector TRV2
(pYL156) (Liu et al., 2002a,b) following a classical digestion–
ligation reaction and verified by Sanger sequencing. After
sequence verification, the TRV-MSH5 vector was transformed into
Agrobacterium tumefaciens GV3101 (pMP90) strain. The incuba-
tion and inoculation protocols were executed as described by
Nimchuk et al. (2000). Plant inoculation was performed by leaf
infiltration (Vaghchhipawala et al., 2011) with one of the VIGS vec-
tors of choice: TRV2-MSH5, TRV2-PDS (stock reference CD3-1047;
ABRC) or TRV2-GUS (Tameling and Baulcombe, 2007) in combina-
tion with TRV1 (pYL156, stock reference CD3-1039; ABRC) in a
1:1 ratio.

Expression analysis of TRV1, TRV2-MSH5 and endogenous

MSH5 in treated and non-treated plants

Flower buds of Col-0, Col-0::TRV-GUS and Col-0::TRV-MSH5
plants grown under the same conditions were harvested in liquid
nitrogen and stored at �80°C. RNA extraction was achieved using
TRIzol and DNA synthesis was performed with the RevertAid RT
Reverse Transcription Kit from ThermoFisher Scientific. Primers
RT-TRV1-Fw, 50-CATGTTGGTGGGAAGAAGAGTGAACACAAG-30,
and RT-TRV1-Rw, 50-GATTTGAATGAACCCAGGCGTATCTGCAG-30,
were designed to detect the TRV1-encoded polymerase by
RT-PCR.

The qRT-PCR was performed using two reference genes:
At3G47060, which encodes for a chloroplast-localized FtsH protein
and is stably expressed in the shoot apex (Sakamoto et al., 2003;
Liu et al., 2010), and At4G26410, commonly used as a reference
gene for different developmental stages and, in plants, subjected
to different abiotic and biotic stress conditions (Hong et al.,
2010; Kudo et al., 2016). The primers used to detect the expression
of these two genes were qRT-At3G47060-Fw, 50-GGCTTGGTG
CTCAACTTGAAGAG-30, qRT-At3G47060-Rw, 50-TGGTGCAACCAC
CATGCTTAAC-30, qRT-At4G26410-Fw, 50-GAGCTGAAGTGGCTTC
CATGAC-30, and qRT-At4G26410-Rw, 50-GGTCCGACATACCCATGA
TCC-30, respectively. For assessing REC8 and endogenous MSH5
expression, the following primers were designed: qRT-REC8-Fw,
50-TCGTAGGGACGGATTTGCTGAG-30, qRT-REC8-Rw, 50-TGGTTGT
GGTCTATCGTGTTCCTC-30, qRT-MSH5-Fw, 50-TGCTGAGCTATGGC
CTTCAC-30, and qRT-MSH5-Rw 50-CCGCAAACTTGTCAACAGCA-30.
To detect the expression of TRV2-MSH5 we used the following pri-
mers: qRT-TRV2-MSH5-Fw, 50-GCACAGACTGGTATATCTTCGA-30,
and qRT-TRV2-MSH5-Rw, 50-GGTTTCTACAATTCGTTCGCTT-30.

Pollen phenotyping

A total of four Col-0 plants were inoculated with TRV-MSH5
3 weeks post-germination, and we checked the pollen of one or
two anthers from a total of 80 flowers starting when the first
flower opened (at 32 days post-inoculation) (Data S1). Pollen from
all the open flowers were sampled every day during six consecu-
tive days and were stained using Alexander’s staining solution to
observe pollen viability (Peterson et al., 2010). A total of 47 flowers
of four Col-0 non-inoculated plants and nine flowers of four msh4
plants grown at the same time and in the same tray were used as
controls during the test period.

Pollen phenotyping during crossing and DH production

Pollen of a total of 109 F1 hybrid plants of Ler 9 Col-0 inoculated
with TRV-MSH5 was checked for up to 6 days and used in crosses
in three consecutive experiments. Three non-inoculated F1 hybrids
were grown as wild-type controls in each experiment as well as
three or four plants that were inoculated with TRV-PDS to silence
PDS as a positive control (Burch-Smith et al., 2006).

To produce DHs, the flowers of the F1 hybrid plants of
Ler 9 Col-0 inoculated with TRV-MSH5 producing aborted pollen
were used to pollinate the haploid inducer line GFP-tailswap (Ravi
and Chan, 2010). Haploid selection was performed as described
by Wijnker et al. (2014). Among the 369 offspring produced we
identified 113 haploid offspring, and for 111 of these we obtained
DH seeds. To produce the 85 offspring used as the BC1 control
population, non-inoculated F1 hybrids grown under the same
growing conditions were backcrossed to Ler ms1�/� mutant
plants. The BC1 offspring were also grown under the same grow-
ing conditions as the haploid population. Both subsets were geno-
typed for a total of 42 markers distributed over the whole genome
(Figure S3; Data S2). Doubled haploids, in which elimination of
the GFP-tailswap genome was incomplete, were selected against
based on plant phenotypes (i.e. aberrant growth of rosettes, flow-
ers and seed set in the DHs). The absence of heterozygous geno-
type calls in offspring (doubled) haploids (i.e. for regions derived
from the Ler parent) further confirmed haploidy.

Statistical analysis

The critical D value for the Kolmogorov–Smirnov test was calcu-
lated as D = c(a)√[(n + m)/(nm)], where n and m represent the dif-
ferent sample sizes.

Phenotypical analysis of full hybrids and near-full hybrids

At the moment of flowering, the FT was recorded and MSL, RD
and DW were measured for each plant. Phenotypic data were cor-
rected for spatial trends and block effects with the SPATS package
in R, and the resulting spatial corrected raw data were used for fur-
ther analysis. To test whether the crosses of two different combi-
nations of DH0 resulted in phenotypes that differed from the two
full hybrids (FH1 and FH2), comparisons were made between the
parental and reciprocal wild-type F1 using one-way ANOVA. To
assess the performance of the near-full hybrids in comparison
with the full hybrid, a Dunnett test was conducted in which FH2
was used as a control.

Cytology

F1 hybrid flower buds were sampled at 18 days post-inoculation.
The inflorescences were incubated in Carnoy, a 3:1 mix of glacial
acetic acid (HAc) and 99.8% EtOH, and kept overnight at 4°C.
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Inflorescences were then washed twice with 70% EtOH (in water)
and stored at 4°C. Meiotic chromosome spreads were made as
previously described in Ross et al. (1996), stained with 40,6-di-
amidino-2-phenylindole (DAPI) in Vectashield and analysed using
a Zeiss microscope equipped with epifluorescence optics.
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Figure S1. Positive and negative controls used in VIGS assays:
Col-0::TRV-PDS and Col-0::TRV-GUS. (a) Col-0 plants inoculated
with TRV-PDS display photobleaching affecting leaves, stem and
flower buds at four weeks after inoculation. (b) Fully fertile Col-0
plant inoculated with TRV-GUS, used as a negative control (Scale
bar 13 mm).

Figure S2. Expression analysis of TRV and MSH5 in treated and
control plants. (a) TRV1 expression was detected by RT-PCR in

Col-0::TRV-GUS and Col-0::TRV-MSH5 plants but not in Col-0 con-
trol plants. The line between Col-0 controls and Col-0::TRV-MSH5
samples indicates that these samples were run on different gels,
but both sets of samples were generated and processed at the
same time. (b) Increased expression of the MSH5 gene fragment-
present on TRV-MSH5 in Col-0::TRV-MSH5 as compared to Col-0
controls detected by qRT-PCR. Note that the y-axis is discontinu-
ous. (c) qRT-PCR analysis on endogenous MSH5 expression in
Col-0::TRV-MSH5 and Col-0 controls.

Figure S3. Physical positions of genetic markers used to genotype
reverse breeding offspring. The names of used markers indicate
the Col-0 allele, the Ler allele and the bp position in the Col-0
reference genome.

Figure S4. The phenotypes of parental lines, reciprocal F1 hybrids,
full hybrids and partial hybrids. The three panels show the values
corresponding to flowering time (a) in days afters sowing (DAS),
rosette diameter (b) and dry weight (c). From left to right data are
shown for the parental lines Col-0 (average in yellow) and Ler
(pink), Col-0 x Ler reciprocal hybrids (green), full hybrids (FH, blue)
and near-full hybrids (NFH, orange). Error bars represent standard
error of the mean. FH and NFH genotypes shown in Data S2.

Data S1. Seed set and pollen viability in controls and TRV-MSH5-
inoculated Col-0 plants.

Data S2. Genotypes of Arabidopsis thaliana reverse-breeding off-
spring and BC1 control population. Genotypes and phenotypic
values of the F1 hybrids, full hybrids and near-full hybrids.
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