6 research outputs found

    Landsat and Sentinel-2 Based Burned Area Mapping Tools in Google Earth Engine

    Get PDF
    Four burned area tools were implemented in Google Earth Engine (GEE), to obtain regular processes related to burned area (BA) mapping, using medium spatial resolution sensors (Landsat and Sentinel-2). The four tools are (i) the BA Cartography tool for supervised burned area over the user-selected extent and period, (ii) two tools implementing a BA stratified random sampling to select the scenes and dates for validation, and (iii) the BA Reference Perimeter tool to obtain highly accurate BA maps that focus on validating coarser BA products. Burned Area Mapping Tools (BAMTs) go beyond the previously implemented Burned Area Mapping Software (BAMS) because of GEE parallel processing capabilities and preloaded geospatial datasets. BAMT also allows temporal image composites to be exploited in order to obtain BA maps over a larger extent and longer temporal periods. The tools consist of four scripts executable from the GEE Code Editor. The tools’ performance was discussed in two case studies: in the 2019/2020 fire season in Southeast Australia, where the BA cartography detected more than 50,000 km2, using Landsat data with commission and omission errors below 12% when compared to Sentinel-2 imagery; and in the 2018 summer wildfires in Canada, where it was found that around 16,000 km2 had burned.This research was funded by the Vice-Rectorate for Research of the University of the Basque Country (UPV/EHU) through a doctoral fellowship (contract no. PIF17/96)

    A Preliminary Global Automatic Burned-Area Algorithm at Medium Resolution in Google Earth Engine

    Get PDF
    A preliminary version of a global automatic burned-area (BA) algorithm at medium spatial resolution was developed in Google Earth Engine (GEE), based on Landsat or Sentinel-2 reflectance images. The algorithm involves two main steps: initial burned candidates are identified by analyzing spectral changes around MODIS hotspots, and those candidates are then used to estimate the burn probability for each scene. The burning dates are identified by analyzing the temporal evolution of burn probabilities. The algorithm was processed, and its quality assessed globally using reference data from 2019 derived from Sentinel-2 data at 10 m, which involved 369 pairs of consecutive images in total located in 50 20 × 20 km2 areas selected by stratified random sampling. Commissions were around 10% with both satellites, although omissions ranged between 27 (Sentinel-2) and 35% (Landsat), depending on the selected resolution and dataset, with highest omissions being in croplands and forests; for their part, BA from Sentinel-2 data at 20 m were the most accurate and fastest to process. In addition, three 5 × 5 degree regions were randomly selected from the biomes where most fires occur, and BA were detected from Sentinel-2 images at 20 m. Comparison with global products at coarse resolution FireCCI51 and MCD64A1 would seem to show to a reliable extent that the algorithm is procuring spatially and temporally coherent results, improving detection of smaller fires as a consequence of higher-spatial-resolution data. The proposed automatic algorithm has shown the potential to map BA globally using medium-spatial-resolution data (Sentinel-2 and Landsat) from 2000 onwards, when MODIS satellites were launched.This research was funded by the Vice-Rectorate for Research of the University of the Basque Country (UPV/EHU) through a doctoral fellowship (contract no. PIF17/96)

    A Preliminary Global Automatic Burned-Area Algorithm at Medium Resolution in Google Earth Engine

    Get PDF
    A preliminary version of a global automatic burned-area (BA) algorithm at medium spatial resolution was developed in Google Earth Engine (GEE), based on Landsat or Sentinel-2 reflectance images. The algorithm involves two main steps: initial burned candidates are identified by analyzing spectral changes around MODIS hotspots, and those candidates are then used to estimate the burn probability for each scene. The burning dates are identified by analyzing the temporal evolution of burn probabilities. The algorithm was processed, and its quality assessed globally using reference data from 2019 derived from Sentinel-2 data at 10 m, which involved 369 pairs of consecutive images in total located in 50 20 × 20 km2 areas selected by stratified random sampling. Commissions were around 10% with both satellites, although omissions ranged between 27 (Sentinel-2) and 35% (Landsat), depending on the selected resolution and dataset, with highest omissions being in croplands and forests; for their part, BA from Sentinel-2 data at 20 m were the most accurate and fastest to process. In addition, three 5 × 5 degree regions were randomly selected from the biomes where most fires occur, and BA were detected from Sentinel-2 images at 20 m. Comparison with global products at coarse resolution FireCCI51 and MCD64A1 would seem to show to a reliable extent that the algorithm is procuring spatially and temporally coherent results, improving detection of smaller fires as a consequence of higher-spatial-resolution data. The proposed automatic algorithm has shown the potential to map BA globally using medium-spatial-resolution data (Sentinel-2 and Landsat) from 2000 onwards, when MODIS satellites were launched.This research was funded by the Vice-Rectorate for Research of the University of the Basque Country (UPV/EHU) through a doctoral fellowship (contract no. PIF17/96)

    Above-ground biomass estimation from LiDAR data using random forest algorithms

    Get PDF
    Random forest (RF) models were developed to estimate the biomass for the Pinus radiata species in a region of the Basque Autonomous Community where this species has high cover, using the National Forest Inventory, allometric equations and low-density discrete LiDAR data. This article explores the tuning for RF hyperparameters, obtaining two models with an R2 higher than 0.7 using 2-fold cross-validation. The models selected were applied in Orozko, a municipality with more than 5000 ha of this species, where the model predicts a biomass of 1.06–1.08 Mton, which is between 16–18 % higher than the biomass predicted by the Basque Government.The work reported in this paper was partially supported by FEDER funds for the MINECO project TIN2017-85827-P and project KK-202000044 of the Elkartek 2020 funding program of the Basque Government. Additional support comes from grant IT1284-19 of the Basque Autonomous Community

    African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data

    Get PDF
    Fires are a major contributor to atmospheric budgets of greenhouse gases and aerosols, affect soils and vegetation properties, and are a key driver of land use change. Since the 1990s, global burned area (BA) estimates based on satellite observations have provided critical insights into patterns and trends of fire occurrence. However, these global BA products are based on coarse spatial-resolution sensors, which are unsuitable for detecting small fires that burn only a fraction of a satellite pixel. We estimated the relevance of those small fires by comparing a BA product generated from Sentinel-2 MSI (Multispectral Instrument) images (20-m spatial resolution) with a widely used global BA product based on Moderate Resolution Imaging Spectroradiometer (MODIS) images (500 m) focusing on sub-Saharan Africa. For the year 2016, we detected 80% more BA with Sentinel-2 images than with the MODIS product. This difference was predominately related to small fires: we observed that 2.02 Mkm2 (out of a total of 4.89 Mkm2) was burned by fires smaller than 100 ha, whereas the MODIS product only detected 0.13 million km2 BA in that fire-size class. This increase in BA subsequently resulted in increased estimates of fire emissions; we computed 31 to 101% more fire carbon emissions than current estimates based on MODIS products. We conclude that small fires are a critical driver of BA in sub-Saharan Africa and that including those small fires in emission estimates raises the contribution of biomass burning to global burdens of (greenhouse) gases and aerosols

    BAMS: A Tool for Supervised Burned Area Mapping Using Landsat Data

    Get PDF
    A new supervised burned area mapping software named BAMS (Burned Area Mapping Software) is presented in this paper. The tool was built from standard ArcGIS (TM) libraries. It computes several of the spectral indexes most commonly used in burned area detection and implements a two-phase supervised strategy to map areas burned between two Landsat multitemporal images. The only input required from the user is the visual delimitation of a few burned areas, from which burned perimeters are extracted. After the discrimination of burned patches, the user can visually assess the results, and iteratively select additional sampling burned areas to improve the extent of the burned patches. The final result of the BAMS program is a polygon vector layer containing three categories: (a) burned perimeters, (b) unburned areas, and (c) non-observed areas. The latter refer to clouds or sensor observation errors. Outputs of the BAMS code meet the requirements of file formats and structure of standard validation protocols. This paper presents the tool's structure and technical basis. The program has been tested in six areas located in the United States, for various ecosystems and land covers, and then compared against the National Monitoring Trends in Burn Severity (MTBS) Burned Area Boundaries Dataset
    corecore