25 research outputs found

    Time-dependent reduction of structural complexity of the buccal epithelial cell nuclei after treatment with silver nanoparticles

    Get PDF
    Recent studies have suggested that silver nanoparticles (AgNPs) may affect cell DNA structure in in vitro conditions. In this paper, we present the results indicating that AgNPs change nuclear complexity properties in isolated human epithelial buccal cells in a time-dependent manner. Epithelial buccal cells were plated in special tissue culture chamber / slides and were kept at 37°C in an RPMI 1640 cell culture medium supplemented with L-glutamine. The cells were treated with colloidal silver nanoparticles suspended in RPMI 1640 medium at the concentration 15 mg L−1. Digital micrographs of the cell nuclei in a sample of 30 cells were created at five different time steps: before the treatment (controls), immediately after the treatment, as well as 15 , 30 and 60 min after the treatment with AgNPs. For each nuclear structure, values of fractal dimension, lacunarity, circularity, as well as parameters of grey level co-occurrence matrix (GLCM) texture, were determined. The results indicate time-dependent reduction of structural complexity in the cell nuclei after the contact with AgNPs. These findings further suggest that AgNPs, at concentrations present in today's over-the-counter drug products, might have significant effects on the cell genetic material

    A new class of glycomimetic drugs to prevent free fatty acid-induced endothelial dysfunction

    Get PDF
    Background: Carbohydrates play a major role in cell signaling in many biological processes. We have developed a set of glycomimetic drugs that mimic the structure of carbohydrates and represent a novel source of therapeutics for endothelial dysfunction, a key initiating factor in cardiovascular complications. Purpose: Our objective was to determine the protective effects of small molecule glycomimetics against free fatty acid­induced endothelial dysfunction, focusing on nitric oxide (NO) and oxidative stress pathways. Methods: Four glycomimetics were synthesized by the stepwise transformation of 2,5­dihydroxybenzoic acid to a range of 2,5­substituted benzoic acid derivatives, incorporating the key sulfate groups to mimic the interactions of heparan sulfate. Endothelial function was assessed using acetylcholine­induced, endotheliumdependent relaxation in mouse thoracic aortic rings using wire myography. Human umbilical vein endothelial cell (HUVEC) behavior was evaluated in the presence or absence of the free fatty acid, palmitate, with or without glycomimetics (1µM). DAF­2 and H2DCF­DA assays were used to determine nitric oxide (NO) and reactive oxygen species (ROS) production, respectively. Lipid peroxidation colorimetric and antioxidant enzyme activity assays were also carried out. RT­PCR and western blotting were utilized to measure Akt, eNOS, Nrf­2, NQO­1 and HO­1 expression. Results: Ex vivo endothelium­dependent relaxation was significantly improved by the glycomimetics under palmitate­induced oxidative stress. In vitro studies showed that the glycomimetics protected HUVECs against the palmitate­induced oxidative stress and enhanced NO production. We demonstrate that the protective effects of pre­incubation with glycomimetics occurred via upregulation of Akt/eNOS signaling, activation of the Nrf2/ARE pathway, and suppression of ROS­induced lipid peroxidation. Conclusion: We have developed a novel set of small molecule glycomimetics that protect against free fatty acidinduced endothelial dysfunction and thus, represent a new category of therapeutic drugs to target endothelial damage, the first line of defense against cardiovascular disease

    Combined GSTM1-Null, GSTT1-Active, GSTA1 Low-Activity and GSTP1-Variant Genotype Is Associated with Increased Risk of Clear Cell Renal Cell Carcinoma.

    No full text
    The aim of this study was to evaluate specific glutathione S-transferase (GST) gene variants as determinants of risk in patients with clear cell renal cell carcinoma (cRCC), independently or simultaneously with established RCC risk factors, as well as to discern whether phenotype changes reflect genotype-associated risk. GSTA1, GSTM1, GSTP1 and GSTT1 genotypes were determined in 199 cRCC patients and 274 matched controls. Benzo(a)pyrene diolepoxide (BPDE)-DNA adducts were determined in DNA samples obtained from cRCC patients by ELISA method. Significant association between GST genotype and risk of cRCC development was found for the GSTM1-null and GSTP1-variant genotype (p = 0.02 and p<0.001, respectively). Furthermore, 22% of all recruited cRCC patients were carriers of combined GSTM1-null, GSTT1-active, GSTA1-low activity and GSTP1-variant genotype, exhibiting 9.32-fold elevated cRCC risk compared to the reference genotype combination (p = 0.04). Significant association between GST genotype and cRCC risk in smokers was found only for the GSTP1 genotype, while GSTM1-null/GSTP1-variant/GSTA1 low-activity genotype combination was present in 94% of smokers with cRCC, increasing the risk of cRCC up to 7.57 (p = 0.02). Furthermore, cRCC smokers with GSTM1-null genotype had significantly higher concentration of BPDE-DNA adducts in comparison with GSTM1-active cRCC smokers (p = 0.05). GSTM1, GSTT1, GSTA1 and GSTP1 polymorphisms might be associated with the risk of cRCC, with special emphasis on GSTM1-null and GSTP1-variant genotypes. Combined GSTM1-null, GSTT1-active, GSTA1 low activity and GSTP1-variant genotypes might be considered as "risk-carrying genotype combination" in cRCC

    Analysis of the Glomerular Basement Membrane in Images of Renal Biopsies Using the Split-and-Merge Method: A Pilot Study

    No full text
    Abnormal thinning, thickening, or variation in the thickness of the glomerular basement membrane (GBM) are caused by familial hematuria, diabetes mellitus, and Alport syndrome, respectively. We propose a semi-automated procedure for the segmentation and analysis of the thickness of the GBM in images of renal biopsy samples obtained by using a transmission electron microscope (TEM). The procedure includes the split-and-merge algorithm, morphological image processing, skeletonization, and statistical analysis of the width of the GBM. The procedure was tested with 34 TEM images of six patients. The mean and standard deviation of the GBM width for a patient with normal GBM were estimated to be 368 ± 177 nm, those for a patient with thin GBM associated with familial hematuria were 216 ± 95 nm, and those for a patient with thick GBM due to diabetic nephropathy were 1,094 ± 361 nm. Comparative analysis of the results of image processing with manual measurements by an experienced renal pathologist indicated low error in the range of 12 ± 9 nm

    Segmentation and Analysis of the Glomerular Basement Membrane in Renal Biopsy Samples Using Active Contours: A Pilot Study

    No full text
    Some renal diseases cause changes in the structure of the glomerular basement membranes (GBM). Measurement of the thickness of the GBM can be performed on transmission electron microscopy (TEM) images of renal biopsy samples. Increased thickness of the GBM is observed in patients with diabetic nephropathy. Abnormally thin GBMs are associated with hematuria. We propose image processing methods for the detection and measurement of the GBM. The methods include edge detection, morphological image processing, active contour modeling, skeletonization, and statistical analysis of the width of the GBM. In the present pilot study, the methods were tested with 34 TEM images of six patients. The estimated mean and standard deviation of the GBM width for a patient with normal GBM were 348 ± 135 nm; those for a patient with thin GBMs due to hematuria were 227 ± 94 nm; and those for a patient with diabetic nephropathy were 1,152 ± 411 nm. Comparison with manual measurements by an experienced renal pathologist indicated low error in the range of 36 ± 11 nm
    corecore