810 research outputs found

    The pure BLB-L model and future linear colliders: the Higgs sector

    Full text link
    We summarise the phenomenology of the Higgs sector of the minimal BLB-L extension of the Standard Model at an e+ee^+e^- Linear Collider. Within such a scenario, we show that (in comparison with the Large Hadron Collider) several novel production and decay channels involving the two physical Higgs states could experimentally be accessed at such a machine. In particular, we present the scope of the ZZ' strahlung process for single and double Higgs production, the only suitable mechanism for accessing an almost decoupled heavy scalar state.Comment: This proceeding of the 2011 International Workshop on Future Linear Colliders (LCWS11) is published through the SLAC Electronic Conference Proceedings Archiv

    Spectral broadening in self-assembled GaAs quantum dots with narrow size distribution

    Full text link
    The control over the spectral broadening of an ensemble of emitters, mainly attributable to the size and shape dispersion and the homogenous broadening mechanisms, is crucial to several applications of quantum dots. We present a convenient self-assembly approach to deliver strain-free GaAs quantum dots with size distribution below 15%, due to the control of the growth parameters during the preliminary formation of the Ga droplets. This results in an ensemble photoluminescence linewidth of 19 meV at 14 K. The narrow emission band and the absence of a wetting layer promoting dot-dot coupling allow us to deconvolve the contribution of phonon broadening in the ensemble photoluminescence and study it in a wide temperature range.Comment: 9 pages, 4 figure

    Development of a smartphone based indoor navigation system for visually impaired people

    Get PDF
    We have implemented an Android smartphone based system for localization and navigation in indoor environments of blind and visual impaired people. Through the reading of sensor data, we have created a dead reckoning system to estimate the user’s position as a function of the individuated number of steps and the orientation of its heading, to represent the path on a two-dimensional map, and to save/load the map in a persistent formope

    Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles

    Get PDF
    In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory

    Identifying discontinuities of flood frequency curves

    Get PDF
    Discontinuities in flood frequency curves, here referred to as flood divides, hinder the estimation of rare floods. In this paper we develop an automated methodology for the detection of flood divides from observations and models, and apply it to a large set of case studies in the USA and Germany. We then assess the reliability of the PHysically-based Extreme Value (PHEV) distribution of river flows to identify catchments that might experience a flood divide, validating its results against observations. This tool is suitable for the identification of flood divides, with a high correct detection rate especially in the autumn and summer seasons. It instead tends to indicate the emergence of flood divides not visible in the observations in spring and winter. We examine possible reasons of this behavior, finding them in the typical streamflow dynamics of the concerned case studies. By means of a controlled experiment we also re-evaluate detection capabilities of observations and PHEV after discarding the highest maxima for all cases where both empirical and theoretical estimates display flood divides. PHEV mostly confirms its capability to detect a flood divide as observed in the original flood frequency curve, even if the shortened one does not show it. These findings prove its reliability for the identification of flood divides and set the premises for a deeper investigation of physiographic and hydroclimatic attributes controlling the emergence of discontinuities in flood frequency curves.publishedVersio

    Extreme flooding controlled by stream network organization and flow regime

    Get PDF
    River floods are among the most common natural disasters worldwide, with substantial economic and humanitarian costs. Despite enormous efforts, gauging the risk of extreme floods with unprecedented magnitude is an outstanding challenge. Limited observational data from very high-magnitude flood events hinders prediction efforts and the identification of discharge thresholds marking the rise of progressively larger floods, termed flood divides. Combining long hydroclimatic records and a process-based model for flood hazard assessment, here we demonstrate that the spatial organization of stream networks and the river flow regime control the appearance of flood divides and extreme floods. In contrast with their ubiquitous attribution to extreme rainfall and anomalous antecedent conditions, we show that the propensity to generate extreme floods is well predicted by intrinsic properties of river basins. Most importantly, it can be assessed prior to the occurrence of catastrophes through measurable metrics of these properties derived from commonly available discharge data, namely the hydrograph recession exponent and the coefficient of variation of daily flows. These results highlight the propensity of certain rivers for generating extreme floods and demonstrate the importance of using hazard mapping tools that, rather than solely relying on past flood records, identify regions susceptible to the occurrence of extreme floods from ordinary discharge dynamics.publishedVersio

    Optically controlled dual-band quantum dot infrared photodetector

    Full text link
    We present the design for a novel type of dual-band photodetector in the thermal infrared spectral range, the Optically Controlled Dual-band quantum dot Infrared Photodetector (OCDIP). This concept is based on a quantum dot ensemble with a unimodal size distribution, whose absorption spectrum can be controlled by optically-injected carriers. An external pumping laser varies the electron density in the QDs, permitting to control the available electronic transitions and thus the absorption spectrum. We grew a test sample which we studied by AFM and photoluminescence. Based on the experimental data, we simulated the infrared absorption spectrum of the sample, which showed two absorption bands at 5.85 um and 8.98 um depending on the excitation power

    Mechanochemistry of von Willebrand factor

    Get PDF
    AbstractVon Willebrand factor (VWF), a blood multimeric protein with a very high molecular weight, plays a crucial role in the primary haemostasis, the physiological process characterized by the adhesion of blood platelets to the injured vessel wall. Hydrodynamic forces are responsible for extensive conformational transitions in the VWF multimers that change their structure from a globular form to a stretched linear conformation. This feature makes this protein particularly prone to be investigated by mechanochemistry, the branch of the biophysical chemistry devoted to investigating the effects of shear forces on protein conformation. This review describes the structural elements of the VWF molecule involved in the biochemical response to shear forces. The stretched VWF conformation favors the interaction with the platelet GpIb and at the same time with ADAMTS-13, the zinc-protease that cleaves VWF in the A2 domain, limiting its prothrombotic capacity. The shear-induced conformational transitions favor also a process of self-aggregation, responsible for the formation of a spider-web like network, particularly efficient in the trapping process of flowing platelets. The investigation of the biophysical effects of shear forces on VWF conformation contributes to unraveling the molecular mechanisms of many types of thrombotic and haemorrhagic syndromes

    High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy

    Full text link
    Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route towards quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared to previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.Comment: 14 pages, 3 figure

    Ground state optimization and hysteretic demagnetization: the random-field Ising model

    Get PDF
    We compare the ground state of the random-field Ising model with Gaussian distributed random fields, with its non-equilibrium hysteretic counterpart, the demagnetized state. This is a low energy state obtained by a sequence of slow magnetic field oscillations with decreasing amplitude. The main concern is how optimized the demagnetized state is with respect to the best-possible ground state. Exact results for the energy in d=1 show that in a paramagnet, with finite spin-spin correlations, there is a significant difference in the energies if the disorder is not so strong that the states are trivially almost alike. We use numerical simulations to better characterize the difference between the ground state and the demagnetized state. For d>=3 the random-field Ising model displays a disorder induced phase transition between a paramagnetic and a ferromagnetic state. The locations of the critical points R_c(DS), R_c(GS) differ for the demagnetized state and ground state. Consequently, it is in this regime that the optimization of the demagnetized stat is the worst whereas both deep in the paramagnetic regime and in the ferromagnetic one the states resemble each other to a great extent. We argue based on the numerics that in d=3 the scaling at the transition is the same in the demagnetized and ground states. This claim is corroborated by the exact solution of the model on the Bethe lattice, where the R_c's are also different.Comment: 13 figs. Submitted to Phys. Rev.
    corecore