241 research outputs found

    Role of the chemical homogenization on the microstructural and mechanical evolution of prolonged heat-treated laser powder bed fused Inconel 625

    Get PDF
    Ni-based superalloy components for high-temperature applications rely on the long term stability of the microstructure and mechanical properties at service temperatures. Nowadays, the production of such types of components is frequently performed via Additive Manufacturing (AM) technologies. Nevertheless, few studies are dedicated to understanding the behavior of AM Ni-based superalloys upon prolonged exposure to high temperatures. This work aims at studying the effect of prolonged thermal exposures on the microstructure and mechanical properties of Inconel 625 processed by laser powder bed fusion. Thermal exposures within the range of 600 °C and 900 °C for 200 h were performed on this material. The as-built and solution annealed Inconel 625 conditions were selected. The solution annealed state implies a complete chemical homogenization, typically recommended for working at high temperatures, whereas the initial as-built state is characterized by segregations and fine dendritic structures. Upon the studied prolonged thermal exposures, the peculiar as-built microstructure formed a higher quantity of phases with smaller dimensions with respect to the solution annealed condition under thermal exposures. The smaller phases of the as-built state resulted in similar mechanical properties evolution under different temperatures. Differently, the prolonged heat-treated solution annealed conditions exhibited more marked mechanical properties variations due to coarser phases

    Net shape HIPping of a Ni-superalloy: A study of the influence of an as-leached surface on mechanical properties

    Get PDF
    Hot Isostatic Pressing (HIP) is a net-shape powder metallurgy technique where powders densification is achieved through the application of high temperature and pressure at the same time. Powders are allocated into a hollow steel mold called capsule or canister which gives the final shape to the particles. This technique is particularly useful for manufacturing complex components made of materials which are extremely difficult to process via forging or casting. Thus, HIP is particularly indicated to handle superalloy powders such as Astroloy, which is the object of the following study. One of the most attractive peculiarities of HIP is the low material waste obtained since the overstock is limited to the layers immediately beneath the steel capsule. At the end of the HIP cycle, the canister is typically removed using an acid leaching bath which is responsible for the alteration of the outermost layers of the final product. Only a little number of research papers deal with the optimization of the removal of these layers; Consequently, manufacturers often apply a very conservative approach by eliminating more material than is actually needed with a final machining procedure. This paper aims to optimize this procedure by systematically assessing the total thickness of the altered layer of material deriving from the HIPping and leaching process together. To achieve this goal, a set of samples were prepared by removing progressively thicker layers of material and then they were bend tested. Finally, the recorded mechanical properties were compared with those obtained with the samples machined from the core material. One of the main findings is that the removal of 500 μm of material is enough to recover mechanical properties which are comparable with those observed in samples coming from the core. More specifically, by eliminating the first 100 μm material, all the corroded layer is removed, which results in an overall increase of all the mechanical properties except for ductility. This property strongly depends on the number of prior particle boundaries arising from the HIPping process itself. Thus, the correct amount of overstock material must include both these layers

    Effects of the solution and first aging treatment applied to as-built and post-HIP CM247 produced via Laser Powder Bed Fusion (LPBF)

    Get PDF
    In this work CM247LC, a low weldable Ni-Based alloy, was produced using selective laser melting (SLM). Despite the initial process parameter optimization, the low defect volume fraction was still uncompliant with manufacturing standards. This condition is principally caused by the high γ’ volume fraction which strongly affects the alloy weldability. Nonetheless, a crack free condition was eventually achieved applying a γ’-sub-solvus Hot Isostatic Pressing Cycle (HIP) which lowered the defects fraction down to 0.04%. The HIP cycle also demonstrated to play an important role in the stabilization of the microstructure, considerably limiting the carbides coarsening during the following heat treatment. Apart from the effectiveness of the healing process brought by HIP, the material microstructure still needs an optimization process which will be described along this paper. In fact, the Initial microstructure obtained after the printing process (the as-built condition) as well as the one obtained after HIP (post-HIP) won’t meet the desired requirements. Namely, the dendritic and γ’ free microstructure of the asbuilt material or the one with coarse and disordered particles obtained right after HIP, still need a tailored homogenization process. This paper will show how the combined effect of the solution and first aging treatment will profoundly alter the γ’ precipitation. More specifically, here, a new heat treatment recipe was developed to promote the precipitation of ordered cuboidal primary γ’ so as to improve creep and high temperature fatigue resistance. Moreover, the use of a γ’ super-solvus temperature allowed to achieve a γ’ volume fraction as high as 73% reducing its average size to 520 nm. At the same time, such heat treatment caused a profound alteration of the crystalline structures of the material promoting a general grain coarsening and the formation of equiaxial grain

    A checklist of chiggers from Brazil, including new records (Acari: Trombidiformes: Trombiculidae and leeuwenhoekiidae)

    Get PDF
    A checklist of the family Trombiculidae and Leeuwenhoekiidae is presented, containing 63 species in 30 genera of chiggers from 80 different hosts and 146 localities in Brazil. The type locality and depository are provided, including new locality and host records for the country

    A contribution to the knowledge of Quadraseta brasiliensis Goff and Gettinger, 1989 (Trombidiformes: Trombiculidae), with description of the deutonymph instar

    Get PDF
    In the Neotropical region the genus Quadraseta Brennan, 1970, includes 14 species, with ectoparasitic habits during the larval stage. Quadraseta brasiliensis Goff and Gettinger, 1989, was described from larvae collected on the rodent Hylaeamys megacephalus (Fisher), cited as Oryzomys capito (Olfers). According to these authors, the holotype was deposited in the Museu de Zoologia da Universidade de SĂŁo Paulo and the paratypes were deposited in three other collections: Bernice Pauahi Bishop Museum, Sam Noble Oklahoma Museum of Natural History and United States National Museum of Natural History, however, no type specimens were found in any of these museums. Here we redescribe the larva, describe the deutonymph instar obtained from field-collected larvae, and report new hosts and localities for this species in Brazil. In addition we provide sequences of the 18S ribosomal RNA gene for this species

    Time Scales in Spectator Fragmentation

    Full text link
    Proton-proton correlations and correlations of p-alpha, d-alpha, and t-alpha from spectator decays following Au + Au collisions at 1000 AMeV have been measured with an highly efficient detector hodoscope. The constructed correlation functions indicate a moderate expansion and low breakup densities similar to assumptions made in statistical multifragmentation models. In agreement with a volume breakup rather short time scales were deduced employing directional cuts in proton-proton correlations. PACS numbers: 25.70.Pq, 21.65.+f, 25.70.MnComment: 8 pages, with 5 included figures; To appear in the proceedings of the CRIS 2000 conference; Also available from http://www-kp3.gsi.de/www/kp3/aladin_publications.htm

    The X-Ray Halo Scaling Relations of Supermassive Black Holes

    Get PDF
    We carry out a comprehensive Bayesian correlation analysis between hot halos and direct masses of supermassive black holes (SMBHs), by retrieving the X-ray plasma properties (temperature, luminosity, density, pressure, and masses) over galactic to cluster scales for 85 diverse systems. We find new key scalings, with the tightest relation being M-Tx, followed by M-Lx. The tighter scatter (down to 0.2 dex) and stronger correlation coefficient of all the X-ray halo scalings compared with the optical counterparts (as the M-se) suggest that plasma halos play a more central role than stars in tracing and growing SMBHs (especially those that are ultramassive). Moreover, M correlates better with the gas mass than dark matter mass. We show the important role of the environment, morphology, and relic galaxies/coronae, as well as the main departures from virialization/self-similarity via the optical/X-ray fundamental planes. We test the three major channels for SMBH growth: hot/Bondi-like models have inconsistent anticorrelation with X-ray halos and too low feeding; cosmological simulations find SMBH mergers as subdominant over most of cosmic time and too rare to induce a central-limit-theorem effect; the scalings are consistent with chaotic cold accretion, the rain of matter condensing out of the turbulent X-ray halos that sustains a long-term self-regulated feedback loop. The new correlations are major observational constraints for models of SMBH feeding/feedback in galaxies, groups, and clusters (e.g., to test cosmological hydrodynamical simulations), and enable the study of SMBHs not only through X-rays, but also via the Sunyaev-Zel dovich effect (Compton parameter), lensing (total masses), and cosmology (gas fractions)

    Binary projectile fragmentation of 12C at an incident energy of 33.3 MeV/nucleon

    Get PDF
    Direct binary projectile fragmentation is being investigated for the case where a 400 MeV 12C projectile breaks up into an particle and a 8Be fragment in the interaction with a thin 93Nb and 197Au target. While the 8Be fragments were measured at 9 , the correlated particles were detected in an angular range between 16 and 30 on the opposite side of the beam. From the preliminary results presented here one may obtain information on the amount of quasi-elastic fragmentation (both fragments do not suffer any further interactions after they are produced). These experimental results indicate that the quasi-elastic break-up process is the dominant contribution to the measured correlation spectra. As was also observed in earlier work, the most forward quasi-elastically emitted particles have energies exceeding the beam velocity

    Peri-Operative Management of Patients Undergoing Fenestrated-Branched Endovascular Repair for Juxtarenal, Pararenal and Thoracoabdominal Aortic Aneurysms: Preventing, Recognizing and Treating Complications to Improve Clinical Outcomes

    Get PDF
    The advent and refinement of complex endovascular techniques in the last two decades has revolutionized the field of vascular surgery. This has allowed an effective minimally invasive treatment of extensive disease involving the pararenal and the thoracoabdominal aorta. Fenestrated-branched EVAR (F/BEVAR) now represents a feasible technical solution to address these complex diseases, moving the proximal sealing zone above the renal-visceral vessels take-off and preserving their patency. The aim of this paper was to provide a narrative review on the peri-operative management of patients undergoing F/BEVAR procedures for juxtarenal abdominal aortic aneurysm (JAAA), pararenal abdominal aortic aneurysm (PRAA) or thoracoabdominal aortic aneurism (TAAA). It will focus on how to prevent, diagnose, and manage the complications ensuing from these complex interventions, in order to improve clinical outcomes. Indeed, F/BEVAR remains a technically, physiologically, and mentally demanding procedure. Intraoperative adverse events often require prolonged or additional procedures and complications may significantly impact a patient’s quality of life, health status, and overall cost of care. The presence of standardized preoperative, perioperative, and postoperative pathways of care, together with surgeons and teams with significant experience in aortic surgery, should be considered as crucial points to improve clinical outcomes. Aggressive prevention, prompt diagnosis and timely rescue of any major adverse events following the procedure remain paramount clinical needs
    • …
    corecore