1,478 research outputs found

    Stress intensity factors in bonded half planes containing inclined cracks and subjected to antiplane shear loading

    Get PDF
    The antiplane shear problem for two bonded dissimilar half planes containing a semi-infinite crack or two arbitrarily located collinear cracks was considered. For the semi-infinite crack the problem was solved for a concentrated wedge load and the stress intensity factor and the angular distribution of stresses were calculated. For finite cracks the problem was reduced to a pair of integral equations. Numerical results were obtained for cracks fully imbedded in a homogeneous medium, one crack tip touching the interface, and a crack crossing the interface for various crack angles

    Editorial

    Get PDF

    EXITE2 Observation of the SIGMA Source GRS 1227+025

    Full text link
    We report the EXITE2 hard X-ray imaging of the sky around 3C273. A 2h observation on May 8, 1997, shows a ∼\sim260 mCrab source detected at ∼4σ\sim4\sigma in each of two bands (50-70 and 70-93 keV) and located ∼\sim30' from 3C273 and consistent in position with the SIGMA source GRS1227+025. The EXITE2 spectrum is consistent with a power law with photon index 3 and large low energy absorption, as indicated by the GRANAT/SIGMA results. No source was detected in more sensitive followup EXITE2 observations in 2000 and 2001 with 3σ\sigma upper limits of 190 and 65 mCrab, respectively. Comparison with the flux detected by SIGMA shows the source to be highly variable, suggesting it may be non-thermal and beamed and thus the first example of a ``type 2'' (absorbed) Blazar. Alternatively it might be (an unprecedented) very highly absorbed binary system undergoing accretion disk instability outbursts, possibly either a magnetic CV, or a black hole X-ray nova.Comment: 12 pages, 4 figures, accepted for publication in Ap

    Unabsorbed Seyfert 2 galaxies

    Get PDF
    We present a sample of 17 type 2 Seyfert galaxies which have an X-ray column density lower than 10^{22} cm^{-2}. The Compton thin nature of these sources is strongly suggested by isotropic indicators. We estimate the fraction of these sources to be in the range of 10% - 30% of the population of type 2 Seyfert galaxies. Furthermore, this fraction appears to increase progressively at lower luminosities. The simple formulation of the Unified Model for Seyfert galaxies is not applicable in such sources since the pc-scale molecular torus is not likely to be responsible for the low column density observed, instead the absorption observed is likely to originate at larger scales. According to this hypothesis, in these objects the broad line regions are covered by some dusty obscuring material. In particular, this could occur in objects with dust lanes, patches or HII regions. However, we cannot rule out that in the lowest luminosity sources the BLR is weak, absent or has faded away. This last scenario is consistent with the predictions of some recent theoretical models for low luminosity AGNs

    Dielectric screening in two-dimensional insulators: Implications for excitonic and impurity states in graphane

    Get PDF
    For atomic thin layer insulating materials we provide an exact analytic form of the two-dimensional screened potential. In contrast to three-dimensional systems where the macroscopic screening can be described by a static dielectric constant in 2D systems the macroscopic screening is non local (q-dependent) showing a logarithmic divergence for small distances and reaching the unscreened Coulomb potential for large distances. The cross-over of these two regimes is dictated by 2D layer polarizability that can be easily computed by standard first-principles techniques. The present results have strong implications for describing gap-impurity levels and also exciton binding energies. The simple model derived here captures the main physical effects and reproduces well, for the case of graphane, the full many-body GW plus Bethe-Salpeter calculations. As an additional outcome we show that the impurity hole-doping in graphane leads to strongly localized states, what hampers applications in electronic devices. In spite of the inefficient and nonlocal two-dimensional macroscopic screening we demonstrate that a simple kâ‹…p\mathbf{k}\cdot\mathbf{p} approach is capable to describe the electronic and transport properties of confined 2D systems.Comment: 17 pages, 3 figure
    • …
    corecore