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STRESS INTENSITY FACTORS IN BONDED HALF
PLANES CONTAINING INCLINED CRACKS AND
SUBJECTED TO ANTIPLANE SHEAR LOADING.*

by

J.L. Bassani and F. Erdogan
Lehigh University, Bethlehem, PA.

ABSTRACT

The antiplane shear problem for two bonded dissimilar half
planes containing a semi—iﬁf{nite crack or two arbitrarily located
collinear cracks is considered. For the semi-infinite crack the
problem is solved for a édncentrated wedge load and the stress
intensity factor and the angular distribution of stresses are
calculated. For finite cracks the problem is reduced to a pair
of integral equations. Numerical results are obtained for cracks
fully imbedded in a homogeneous medium, one crack tip touching
the interface, and a crack crossing the interface for various crack

angles.

*This work was supported by NASA-Langley under the Grant NGR39-007-011
and by NSF under the Grant ENG-77-19127.



T. INTRODUCTION

In analytical studies relating to the'fracture of structural
solids, so]utions of anit-plane shear problems serve two distinct
purposes. First, they may be used to shed some light on the quali-
tative behavior of the solutions for the corkesponding somewhat
more difficult in~plane defdrmation problems. Secondly, they may
have practical applications in their own right in situations such
"as torsion or three—diménsiona] problems in which the so-called
third mode 1is separab]e: Particularly in the fracture of nonhomo-
geneous materials initiating from the flaws in the close neighbor-
hood‘of phase boundaries; such as in the growth of microflaws in
polycrystals and cracks in cbmpositeQQ the third mode of fracture
may be quite importanf; With this in mind, it seemed to be worth-
while to report some new results regarding the anti-plane shear
cracks in nonhomogeneous materials. The main problem is that of
a slanted crack in the neighborhood of a plane bimaterial interface,
including the geometries of the crack touching or crossing the |
interface. The cases of semi-infinite crack and the half plane
consisting of two bonded wedges are also considered as they relate
to the main problem.

The general antiplane shear problem is we]]-understoodwand the
basic techniques dealing with its solution have been thoroughly
documented in literature. -Therefore, to include in this paper an
exhaustive review of the subject and the details of the analysis
did not seem to be necessary; The problem under consideration is

the generalization of that considered in [1] where only the case



of the cracks perpendicular .to the interface was studied. The
general method has also been described in [2]. References on the

crack and dislocation problems may be found in [1] and [2].

2. SEMI-INFINITE CRACK AND THE HALF PLANE

The anti-plane shear problems for bonded dissimilar half
planes with a semi-infinite crack and for a half plane which con-
sists of two dissimilar wedges are described in Figures 1 and 2.
In the case of semi—infinite crack under a concentrated anti-plane

shear loading given by

r]ez(r,o) T3eé(r,0) = qG(r«rQ), ~ (1)

using the standard Mellin transforms the solution may be found as

ct+io
: wj(r,e) = 7%T‘f .[Aj(s)sin(se)+Bj(s)cos(se)]r'sds,
: C-io

g - fCHiw
Tjez(r’e) e f u.s[Aj(s)cos(se)—Bj(s)sin(se)]r S ]ds,

c-iw J
-1 Ctio . -s-1
Tjrz(r,e) = 5 fc_imujs[Aj(s)s1n(se)+Bj(s)cos(se)]r ds,
‘ (J = ]a2:3) . (2a-c)
wherew; is the z-component of the displacement, T, and T are
J Jez jrz

the stresses in the jth wedge shown in Figure 1, and

s
.qr
Ai(s) = As(s) = gg%
- -ugAp(s)sin(2sT)
Ay(s) = sin(sm)K(s) ’




u]Al(s)[1-cos(2$w)]

BZ(S) B sin(sm)K(s) :
A2(s)sin[s(eo+n)]+82(s)cos[s(90+w)]-A3(s)sin[s(eo-w)]

83(5) N cos[s(eo-ﬂTT ’
A-(s)sin(se Y+B,(s)cos(s8 _)-A (s)sin(s8 )

By(s) = £ ° coz(seof o . — ’ (3a-e)

K(s) = (uy-updcosls(m-200)] - (uy+up)cos(sm) (4)

Of particular practical interest is the shear cleavage stress in
the half plane 2 which, for r<<r,, may be expressed in the following

asymptotic form:

61 (8)

(r,0) = - 3

T
2 "o (r/r,)

. . _‘l
+ 0(r/r )%27") , B=1-s ,r<<r .
0z 0 , 1 0

60<6<60 + T

, (5)

i -2u,cos[s (m-0)]
6.108) = o y(w2e, TS Tals, (7720, 0 1=y Jms in(sym)

(0,580, *7) . (6)

where s is the root of K(s) = 0 with 0<Re(s])<1 and it can be shown
that there is only one such root in this strip which is always real,
and Re(52)>1. Table 1 shows the power of stress singularity for
various material combinations and for Qarious values of 60.' Expres-
sions similar to (5) can be developed for other stress components

in the two materials. Figures 3-5 show some sample results for the
function G_1(e) in the entire range 0<e<2n. Analytically, it can

be shown that G_](e) becomes maximum for 8 = m indicating that the

plane of the crack is thé weak shear cleavage plane in the bonded
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medium. One may also note that (arbitrarily) defining a stress

intensity factor by

k, = lim__ 2 rP 1 (r,m) (7)
3 r>0 262

it is seen that in this problem

k3 = V2 q rg-] G_](TT) . (8)

Also, referring to Figure 1 and defining the stress intensity factor

in terms of the crack opening displacement as (see [1]),

. *
Ky = Tim g 72 W [ (r,+0) - Wy(r,-0)] (9)
we find
o -uzcos(s]eo)cos[s](nheo)] . (10)

sin[sl(ﬂ-GET]co§Is](n-eo)]+sin(s]eo)cos(s]eo)

Figure 6 shows an example for the angular distribution of the
asymptbtic values of Trz which, for the nonhomogeneous medium, is
seen to be discontinuous at the interfaces 6 = eo and 6 = m + 60.

For_the half plane shown in Figure 2 the basic equations (2)-
are still valid where for the external load

Tygp (rs-85) = q8(r-r ), (11)

the functions Ai(s) and Bi(s), (i=1,2) are given by
s

417, sin(sez) w2
Ay(s) = TR € ﬁ;‘Az(s) ,
s .
ars cos(sez)

K1 (5) = gt lgsug)sin(sm) + (e dsinls(r-20)1) - (13)



Table 1. Power of stress singularity 8, for a crack
terminating at the interface. “2/“] = 0.0072 for

Boron-Epoxy, 0.043 for Aluminum-Epoxy, 1.0 for homo-
geneous - medium, 23.08 for Epoxy-Aluminum, and {38.46

for Epoxy-Boron.

UPYATD

e, 0.0072 0.043 1.0  23.08  138.36

0 0.5 0.5 0.5 0.5 0.5
T% 0.890 0.753 0.5 0.468 0.467
—g 0.919  0.809 0.5 0.432 0.429
7 0.931 0.836 0.5  0.391  0.386
' % 0.938 0.851 'o.s 0.344 0.335
%g 0.942 0.860 0.5 0.290  0.276
= 0.944 0.865 0.5  0.228 ~ 0.205
%% 0.946 0.868 0.5  0.165  0.122
7 | 0.946 0.869 0.5  0.131  0.054

Table 2. Power of singularity B' at vertex
for bonded wedges of total angle .

0, . 1. 23.08 1 - 138.46
112 u2 .
T 0.355 0.444
o 0.367 0.417
= 0.343 0.377
L 0.303 0.328
E 0.251 0.269
15 0.185 0.197
15 0.103 0.110




Examining the asymptotic behavior of the solution for re<r s it

can be shown that for 90<ﬂ/2 the power B' of the dominant term is
negative if My <Hy (i.e., the stress state at r = 0 is bounded),

and positive if u1>u2 (i.e., the stress state at r = 0 is singular).

Near the apex the shear cleavage stress is (Figure 2)

H, (6
T (r,0) = 19) gT * O(r/ro)52'1) ; (14)
16z 0 (r/ro)
(U]'UZ)Sin[S](92‘9)]'(U]+U2)51n[5](62'6)]
H'I(e) = L(S_I)’ s
-2u,sin[s,(6,-6)]
Hy(8) = —2 L(S]; 2 , B, =m0, (15)
L(S1)=(u]+ﬁ2)ﬂcos(s]ﬂ)+(u2-u1)("-290)c05[51(W-ZGO)] , (16)

It can also be shown that the displacement derivatives and the

cleavage shear along the bond line 6 = 0 are related by

M 3% wy(0,-0.) = {(uy-uy)cosls,(m-26 )]

0
+ (u1+ué)cos s1ﬂ} 5% w2(0,n—eo) . (17)
. B . * B' 3
11mr+0r T]ez(r’O) = Tim quy ¥ 5y W](r,-eo) - (18)
-2u u,sin[sq(m-6 )]
* 172 1 0 (19)

L (ﬂz-u])cos[s1(n-zeo)]-(u]+u2)cos(s]ﬂ)

Table 2 shows some sample results for B' where the modulus ratio
used as examples correspond to Aluminum-Epoxy and Boron-Epoxy

material pairs.



3. FINITE CRACKS
Referring now to Figure 7 we consider the bonded half planes
containing two collinear cracks (a]<r<b1,6=6]) and (a2<r<b2,e=n+e]).

It will be assumed that the crack surface tractions

T]ez(rse]) = q](r),Téez(r,9]+ﬁ) = qz(r) (20)

are the only external loads acting on the medium. The results for
all other types of loading may be obtained through the standard

superposition technique. Defining the unknown functions
= _0 _ _ -
fi(r) = Br[wi(r’ei+0) wi(r’ei 0)] s 92 m o+ 9] s
i=1,2 (21)

noting that (see Figure 7) |

fi(r) =0 , O<r<a, , bi<r<e i=1,2 (22)
and using the standard dis]dcation solutions as the Green's func-
tions [3], the problem may be reduced to the following system of

integral equations:

My by 1
q1(p) = oy Ja f](S){gja - k(p,S,G])}dS
1

My (P2 -
- (0 g [ 2 F(0) g as s (agceshy)

My by 1
qz(p) f?'[a fZ(S) {ETE + k(S,p,S])}dS
2 |
"1 £ (s‘) 1 d4s, (a,<p<b,) (23a,b)
1 p+s US» 13,°P<Dy ’

u
- (1-x) EQ
—nfa1



where

A= (1-‘2'“")/(“2'*'11]) s . (?4)
P-Sy. .. 2 2
o (5:;)51n Q]_+ cos 9]
k(p,S,G]) - p+S p-5S 2 . 2 2 (25)
(E¢§) sinc6; + cos 04

From (21) and (22) it follows that (23) must be solved under the
following single-valuedness conditions:

b.

f Tf(r)dr =0, =12 . (26)

a.
1 .

The solution of the system of singular integral equations is

of the form

Gj(S)
_ . _ B
(bJ- s)%i(s aj) J_

fJ(S) = s j=]a2 ’ (27)

where Gj(s) is a bounded function in the closed interval ajgsibj.
The coefficients @5 and Bj may be determined from the application
of the function-theoretic method to the singular integral equa-

tions [4]. Thus it can be shown that
- -1
“F% Tz o

_ _ 1
8] = 62 =5 for a]>0 . a2>0 s

B] = 82 = g' , for a; = 0 = a, : (28a-d)

where the real numbers B (0<B8<1) and B' {0<B'<0D.5) are the powers

of stress singularity found in the previous section for a semi-



infinite crack and for a nonhomogeneous half plane, respective]y*
(see tables 1 and 2).
The integral equations (23) are solved by introducing the

following normalized quantities

. 2s - (bj+aj) - 2p - (bj+aj) ’
J bj -2 Jj bj - A
g.(t)
fj(s) = ¢j(t) = bj_aj aj+83 aj B
(== 7 Tty T(eey)
aj(e) = Q5(x) » (-1kyat)<) L (3= 1.2) (29)

and by using Gauss-Chebyshev or Gauss-Jacobi integration formulas
(see, for example [5]). For crack geometries a]>0 and azzo or
a;20 , a,>0 the conditions (26) are valid and the solution is
rather straightforward. For ay = 0 = a, (26) reduces to the fol-
lJowing condition

b b
fo‘ f,(s)ds + Joz fo(s)ds = 0 , (30)

stating that the crack surface displacements at r = 0 must be
continuous. The additional condition which is necessary to insure
the uniqueness of the solution of (23) comes from the function

theoretic analysis (see, for example [56]) and is given by

u1G](0) = ‘62(0)’b1/b2{(11]'Uz)cos[z(]‘B'I)e'l]+ (U]+U2)COS
[(1-8,)01)  (31)
*In this section it is assumed that 0<e1<§. Hence, if LERa P the
characteristic function is K](s) = 0 as given by (13), and if Hy<u,

then in (13) M and u, are interchanged, where 51 is the relevant
root with 0<s]<1 s B' = 1-51.
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4, STRESS INTENSITY FACTORS
For the crack tips fully imbedded in a homogeneous medium,

(i.e., for a1>0,aé>0) the stress intensity factors are defined by

i
k3(bi) 11mr+bi[2(r-bi)]2Ti (r,ei) s

0z

L
k3(ai) ]1mr+a.[2(ai'r)]2Ti (r,ei) » 8y =T+ 8,
i 0z
i=1,2. (32)
For the crack terminating at an interface, for example, for
a; = 0)a2>0 R k3 is defined as
- 14 8
ky = 11mr+0/7 rH r]é (r,e]) - (33)
z
For the crack crossing the interface, assuming that 0<8]<n/2 .
at the intersection of the crack and the interface stress state
js singular only on one side of the crack. In this case the stress
intensity factor is (arbitrarily) defined in terms of the inter-
face shear stress as follows:

k3(0) = Vim vZ v 1 (r,m/2) , k3(0) = 0, for upru,

6z

k

- . +
3(0) = Tim 72 P (e -1r2) ky(0) = 0 , for uu,

]SZ
(34a,b)

In the numerical analysis the stress intensity factors are obtained
in terms of asymptotic values of the functions fi(r) and fz(r) orl
in terms of gj(T1) , (j = 1,2) (see equation (29)).

The calculated results given in the next section is based on

constant crack surface tractions, namely

11



q; (r)=Q;(x)= g, ay<r<hy 5 -T<x<l , § = 1,20 (35)

For example, if the nonhomogeneous plane is under uniform anti-
plane shear |
T o = T -0 = )
1xz{=2¥) = Toyp (=2¥) = g (36)
then A
G1p9 = “9,51N0; , G5qg = qosine'1 . (37)

Or, if the plane is under displacement loading

aw] 8w2

il Tl A (38)
then

999 -u]eocose1 » Qpqg = My, COS0, . (39)

5. NUMERICAL RESULTS
The numerical results for a crack lying in one half plane
only (i.e., for a, = b2) are given in Tables 3-5 where

ag = (a1+b])/2 » €= ay t a,. (40)

The tables show the normalized stress intensity factors defined

by
k3(by)

K =
R TYTCN

kylay) , for c>a, ’,
910”20
ky(0)

K(-1) (42)

s for ¢ = a

B 0
3 %10

The material pair of_a]umihum and epoxy is used as an example.

In Table 3 ﬁ2>u] , in Table 4 ﬂ2<u] , and in Table 5 M, = 0 (the

half plane). For the crack tip terminating at the interface

12



(i.e., for ay = 0 or c = ao) the corresponding power B, = B of
the stress singularity is given in Table 1.

The results for the problem of a crack crossing the boundary
are given in Table 6. In this case the normalized stress intensity
factors shown in the table are defined by

(o (bs) = ks(bq) K(b)=k3(b2)

U T I AT
k3(0)

B1
b3

Kg(o) = (43a-c)
920
In this example the external loads are assumed to be the displace-
ment loading given by (38) and (39). Note that since Hy<H, and
0<6]<n/2 s k;(O) = 0. The related power of stress singularity
By = B' is given by Table 2.
Figures 8 and 9 show some sample distributions of the density

functions 1"'.I and f2 for a; = a, = 0 which are normalized in the

following form:

by B1%3
F'i(t'i) = 280('_2) f_i(l") s
-]<ti<] » O<r<by 7 = 1,2 (44)
where e, is the load parameter defined by (38). Note that at r = 0
or ti = -] the density functions become unbounded having a common
B8

r~ 1 type singularity.
| Figures 10 and 11 give some idea about.  the crack opening dis-
placement again for the case of a crack crossing the interface.

Here, the normalized displacements w] and w2 are defined by

1
. by Bitm
Wit = 2-0 e () P pwtuil L i= 12 . (45)

13
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It should be emphasized that at the interface even though the
displacements Wy and Wp are continuous, their derivatives are
always discontinuous. This means that at r = 0 the crack
opening disnlacement would always have a "kink".
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Figure 1. .Semi-infinite crack terminating at a bimaterial
interface in bonded half planes.
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Figure 2. Half plane which consists of two dissimilar
bonded wedges.
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Figure 3. Angular distribution of the measure of shear
- cleavage stress T in bonded half planes with
a semi-infinite c@ﬁck-(see Figure 1 and equation
5 for terminology). Material pair: Aluminum-

Epoxy, 60 = /8.
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Figure 5. Same as Figure 3, 8 n/2.
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Figure 6. Angular distribution of the stress component Tys
for 8, = n/4 (see Figure 1 for terminology).
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Fig. 7 Bonded half planes containing arbitarily located
collinear cracks.

25



Fighre 8.

6__-
4._-
2...__
Fi
O,_.-
r_
Fo -
-2 T 01773~
i Fo o=
. =23.077
..4 Ly — b
—2:05
= | '
el | 1
| o -l 0 '
ta - t

Distribution »f the normalized density functions
in bonded haif planes with a crack crossing the

interface '(s2e equations 21, 29 and 44 and Figure
7 for definitiqns). . . ..
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Figure 9. Same as Figure 8, b,/b; = 2.
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Figure 10.
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"Distribution of the normalized crack opening dis-

p]acement in bonded half planes with a crack cros-
sing the interface (see equations 45 and 29, and

- Figure 1 for def1n1t1ons)
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Figure 11. Same as Figure 10, b,/by =
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