815 research outputs found

    Urbanization and seasonality strengthens the CO2 capacity of the Red River Delta, Vietnam

    Get PDF
    Tropical rivers are dynamic CO2 sources. Regional patterns in the partial pressure of CO2 (pCO2) and relationships with other a/biotic factors in densely populated and rapidly developing river delta regions of Southeast Asia are still poorly constrained. Over one year, at 21 sites across the river system in the Red River Delta (RRD), Vietnam, we calculated pCO2 levels from temperature, pH, and total alkalinity and inter-linkages between pCO2 and phytoplankton, water chemistry and seasonality were then assessed. The smaller, more urbanized, and polluted Day River had an annual median pCO2 of 5000 ± 3300 µatm and the larger Red River of 2675 ± 2271 µatm. pCO2 was 1.6 and 3.2 times higher during the dry season in the Day and Red rivers respectively than the rainy season. Elevated pCO2 levels in the Day River during the dry season were also 2.4-fold higher than the median value (2811 ± 3577 µatm) of calculated and direct pCO2 measurements in >20 sub/tropical rivers. By further categorizing the river data into Hanoi City vs. other less urban-populated provinces, we found significantly higher nutrients, organic matter content, and riverine cyanobacteria during the dry season in the Day River across Hanoi City. Forward selection also identified riverine cyanobacteria and river discharge as the main predictors explaining pCO2 variation in the RRD. After accounting for the shared effects (14%), river discharge alone significantly explained 12% of the pCO2 variation, cyanobacteria uniquely a further 21%, while 53% of the pCO2 variance was unexplained by either. We show that the urbanization of rivers deltas could result in increased sources of riverine pCO2, water pollution, and harmful cyanobacterial blooms. Such risks could be mitigated through water management to increase water flows in problem areas during the dry season

    Predictive power of the ADHD GWAS 2019 polygenic risk scores in independent samples of bipolar patients with childhood ADHD

    Get PDF
    BACKGROUND Although there is evidence of genetic correlation between bipolar disorder (BP) and ADHD, the extent of the shared genetic risk and whether childhood ADHD (cADHD) influences the characteristics of the adult BP remain unclear. Our objectives were: (i) to test the ability of polygenic risk scores (PRS) derived from the latest PGC ADHD-GWAS (Demontis et al., 2019) to predict the presence of cADHD in BP patients; (ii) to examine the hypothesis that BP preceded by cADHD is a BP subtype with particular clinical traits and (iii) partially shares its molecular basis with ADHD. METHOD PRS derived from the ADHD-GWAS-2019 were tested in BP patients (N = 942) assessed for cADHD with the Wender Utah Rating Scale and in controls from Romania and UK (N = 1616). RESULTS The ADHD-PRS differentiated BP cases with cADHD from controls. Proband sex and BP age-of-onset significantly influenced the discriminative power of the ADHD-PRS. The ADHD-PRS predicted the cADHD score only in males and in BP cases with early age-of-onset (≤21 years). Bipolar patients with cADHD had a younger age-of-onset of mania/depression than patients without cADHD. The ADHD-PRS predicted the BP-affection status in the comparison of early-onset BP cases with controls suggesting a partial molecular overlap between early-onset BP and ADHD. LIMITATIONS Retrospective diagnosis of cADHD, small sample size. CONCLUSIONS The PRS-analysis indicated an acceptable predictive ability of the ADHD-SNP-set 2019 in independent BP samples. The best prediction of both cADHD and BP-affection status was found in the early-onset BP cases. The results may have impact on the individual disease monitoring

    Genome-wide association study identifies glutamate ionotropic receptor GRIA4 as a risk gene for comorbid nicotine dependence and major depression

    Get PDF
    Smoking and major depression frequently co-occur, at least in part due to shared genetic risk. However, the nature of the shared genetic basis is poorly understood. To detect genetic risk variants for comorbid nicotine dependence (ND) and major depression (MD), we conducted genome-wide association study (GWAS) in two samples of African-American participants (Yale-Penn 1 and 2) using linear mixed model, followed by meta-analysis. 3724 nicotine-exposed subjects were analyzed: 2596 from Yale-Penn-1 and 1128 from Yale-Penn-2. Continuous measures (Fagerström Test for Nicotine Dependence (FTND) scores and DSM-IV MD criteria) rather than disorder status were used to maximize the power of the GWAS. Genotypes were ascertained using the Illumina HumanOmni1-Quad array (Yale-Penn-1 sample) or the Illumina HumanCore Exome array (Yale-Penn-2 sample), followed by imputation based on the 1000 Genomes reference panel. An intronic variant at the GRIA4 locus, rs68081839, was significantly associated with ND-MD comorbidity (β = 0.69 [95% CI, 0.43-0.89], P = 1.53 × 10-8). GRIA4 encodes an AMPA-sensitive glutamate receptor that mediates fast excitatory synaptic transmission and neuroplasticity. Conditional analyses revealed that the association was explained jointly by both traits. Enrichment analysis showed that the top risk genes and genes co-expressed with GRIA4 are enriched in cell adhesion, calcium ion binding, and synapses. They also have enriched expression in the brain and they have been implicated in the risk for other neuropsychiatric disorders. Further research is needed to determine the replicability of these findings and to identify the biological mechanisms through which genetic risk for each condition is conveyed

    Overfeeding, Autonomic Regulation and Metabolic Consequences

    Get PDF
    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The overfeeding-induced changes in autonomic outflow occur with typical symptoms such as adiposity and hyperinsulinemia. There might be a causal relationship between autonomic disturbances and the consequences of overfeeding and obesity. Therefore studies were designed to investigate autonomic functioning in experimentally and genetically hyperphagic rats. Special emphasis was given to the processes that are involved in the regulation of peripheral energy substrate homeostasis. The data revealed that overfeeding is accompanied by increased parasympathetic outflow. Typical indices of vagal activity (such as the cephalic insulin release during food ingestion) were increased in all our rat models for hyperphagia. Overfeeding was also accompanied by increased sympathetic tone, reflected by enhanced baseline plasma norepinephrine (NE) levels in both VMH-lesioned animals and rats rendered obese by hyperalimentation. Plasma levels of NE during exercise were, however, reduced in these two groups of animals. This diminished increase in the exercise-induced NE outflow could be normalized by prior food deprivation. It was concluded from these experiments that overfeeding is associated with increased parasympathetic and sympathetic tone. In models for hyperphagia that display a continuously elevated nutrient intake such as the VMH-lesioned and the overfed rat, this increased sympathetic tone was accompanied by a diminished NE response to exercise. This attenuated outflow of NE was directly related to the size of the fat reserves, indicating that the feedback mechanism from the periphery to the central nervous system is altered in the overfed state.

    Prognostic relevance of a T-type calcium channels gene signature in solid tumours: A correlation ready for clinical validation

    Get PDF
    BackgroundT-type calcium channels (TTCCs) mediate calcium influx across the cell membrane. TTCCs regulate numerous physiological processes including cardiac pacemaking and neuronal activity. In addition, they have been implicated in the proliferation, migration and differentiation of tumour tissues. Although the signalling events downstream of TTCC-mediated calcium influx are not fully elucidated, it is clear that variations in the expression of TTCCs promote tumour formation and hinder response to treatment.MethodsWe examined the expression of TTCC genes (all three subtypes; CACNA-1G, CACNA-1H and CACNA-1I) and their prognostic value in three major solid tumours (i.e. gastric, lung and ovarian cancers) via a publicly accessible database.ResultsIn gastric cancer, expression of all the CACNA genes was associated with overall survival (OS) among stage I-IV patients (all pConclusionsAlterations in CACNA gene expression are linked to tumour prognosis. Gastric cancer represents the most promising setting for further evaluation

    RNA editing signature during myeloid leukemia cell differentiation

    Get PDF
    Adenosine deaminases acting on RNA (ADARs) are key proteins for hematopoietic stem cell self-renewal and for survival of differentiating progenitor cells. However, their specific role in myeloid cell maturation has been poorly investigated. Here we show that ADAR1 is present at basal level in the primary myeloid leukemia cells obtained from patients at diagnosis as well as in myeloid U-937 and THP1 cell lines and its expression correlates with the editing levels. Upon phorbol-myristate acetate or Vitamin D3/granulocyte macrophage colony-stimulating factor (GM-CSF)-driven differentiation, both ADAR1 and ADAR2 enzymes are upregulated, with a concomitant global increase of A-to-I RNA editing. ADAR1 silencing caused an editing decrease at specific ADAR1 target genes, without, however, interfering with cell differentiation or with ADAR2 activity. Remarkably, ADAR2 is absent in the undifferentiated cell stage, due to its elimination through the ubiquitin–proteasome pathway, being strongly upregulated at the end of the differentiation process. Of note, peripheral blood monocytes display editing events at the selected targets similar to those found in differentiated cell lines. Taken together, the data indicate that ADAR enzymes play important and distinct roles in myeloid cells

    Urinary retinol binding protein predicts renal outcome in systemic immunoglobulin light-chain (AL) amyloidosis

    Get PDF
    Summary: Renal risk stratification in systemic immunoglobulin light-chain (AL) amyloidosis is according to estimated glomerular filtration rate (eGFR) and urinary protein creatinine ratio (uPCR), the latter attributed to glomerular dysfunction, with proximal tubular dysfunction (PTD) little studied. Urinary retinol binding protein 4 (uRBP), a low molecular weight tubular protein and highly sensitive marker of PTD, was prospectively measured in 285 newly diagnosed, untreated patients with systemic AL amyloidosis between August 2017 to August 2018. At diagnosis, the uRBP/creatinine ratio (uRBPCR) correlated with serum creatinine (r = 0·618, P 30 ml/min/1.73 m2 [HR 4·11, (95% CI 1·45–11·65); P = 0·008] and those who failed to achieve a deep haematological response to chemotherapy within 3 months of diagnosis [HR 6·72, (95% CI 1·83–24·74); P = 0·004], and also predicted renal progression [HR 1·91, (95% CI 1·18–3·07); P = 0·008]. Elevated uRBPCR indicates PTD and predicts renal outcomes independently of eGFR, uPCR and clonal response in systemic AL amyloidosis. The role of uRBPCR as a novel prognostic biomarker merits further study, particularly in monoclonal gammopathies of renal significance

    A General Framework for Formal Tests of Interaction after Exhaustive Search Methods with Applications to MDR and MDR-PDT

    Get PDF
    The initial presentation of multifactor dimensionality reduction (MDR) featured cross-validation to mitigate over-fitting, computationally efficient searches of the epistatic model space, and variable construction with constructive induction to alleviate the curse of dimensionality. However, the method was unable to differentiate association signals arising from true interactions from those due to independent main effects at individual loci. This issue leads to problems in inference and interpretability for the results from MDR and the family-based compliment the MDR-pedigree disequilibrium test (PDT). A suggestion from previous work was to fit regression models post hoc to specifically evaluate the null hypothesis of no interaction for MDR or MDR-PDT models. We demonstrate with simulation that fitting a regression model on the same data as that analyzed by MDR or MDR-PDT is not a valid test of interaction. This is likely to be true for any other procedure that searches for models, and then performs an uncorrected test for interaction. We also show with simulation that when strong main effects are present and the null hypothesis of no interaction is true, that MDR and MDR-PDT reject at far greater than the nominal rate. We also provide a valid regression-based permutation test procedure that specifically tests the null hypothesis of no interaction, and does not reject the null when only main effects are present. The regression-based permutation test implemented here conducts a valid test of interaction after a search for multilocus models, and can be applied to any method that conducts a search to find a multilocus model representing an interaction
    • …
    corecore