864 research outputs found

    Multi-Agent Deep Reinforcement Learning-Driven Mitigation of Adverse Effects of Cyber-Attacks on Electric Vehicle Charging Station

    Full text link
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has myriads of exploitable vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. These standalone or networked EVCS open up large attack surfaces for the local or state-funded adversaries. The state-of-the-art approaches are not agile and intelligent enough to defend against and mitigate advanced persistent threats (APT). We propose the data-driven model-free distributed intelligence based on multiagent Deep Reinforcement Learning (MADRL)-- Twin Delayed Deep Deterministic Policy Gradient (TD3) -- that efficiently learns the control policy to mitigate the cyberattacks on the controllers of EVCS. Also, we have proposed two additional mitigation methods: the manual/Bruteforce mitigation and the controller clone-based mitigation. The attack model considers the APT designed to malfunction the duty cycles of the EVCS controllers with Type-I low-frequency attack and Type-II constant attack. The proposed model restores the EVCS operation under threat incidence in any/all controllers by correcting the control signals generated by the legacy controllers. Also, the TD3 algorithm provides higher granularity by learning nonlinear control policies as compared to the other two mitigation methods. Index Terms: Cyberattack, Deep Reinforcement Learning(DRL), Electric Vehicle Charging Station, Mitigation.Comment: Submitted to IEEE Transactions on Smart Grid

    Towards portable muography with small-area, gas-tight glass Resistive Plate Chambers

    Get PDF
    Imaging techniques that use atmospheric muons, collectively named under the neologism "muography", have seen a tremendous growth in recent times, mainly due to their diverse range of applications. The most well-known ones include but are not limited to: volcanology, archaeology, civil engineering, nuclear reactor monitoring, nuclear waste characterization, underground mapping, etc. These methods are based on the attenuation or deviation of muons to image large and/or dense objects where conventional techniques cannot work or their use becomes challenging. In this context, we have constructed a muography telescope based on "mini glass-RPC planes" following a design similar to the glass-RPC detectors developed by the CALICE Collaboration and used by the TOMUVOL experiment in the context of volcano radiography, but with smaller active area (16 ×\times 16 cm2^{2}). The compact size makes it an attractive choice with respect to other detectors previously employed for imaging on similar scales. An important innovation in this design is that the detectors are sealed. This makes the detector more portable and solves the usual safety and logistic issues for gas detectors operated underground and/or inside small rooms. This paper provides an overview on our guiding principles, the detector development and our operational experiences. Drawing on the lessons learnt from the first prototype, we also discuss our future direction for an improved second prototype, focusing primarily on a recently adopted serigraphy technique for the resistive coating of the glass plates.Comment: 8 pages, 7 figures, XV Workshop on Resistive Plate Chambers and Related Detectors (RPC2020

    Line tension and structure of smectic liquid crystal multilayers at the air-water interface

    Full text link
    At the air/water interface, 4,-8-alkyl[1,1,-biphenyl]-4-carbonitrile (8CB) domains with different thicknesses coexist in the same Langmuir film, as multiple bilayers on a monolayer. The edge dislocation at the domain boundary leads to line tension, which determines the domain shape and dynamics. By observing the domain relaxation process starting from small distortions, we find that the line tension is linearly dependent on the thickness difference between the coexisting phases in the film. Comparisons with theoretical treatments in the literature suggest that the edge dislocation at the boundary locates near the center of the film, which means that the 8CB multilayers are almost symmetric with respect to the air/water interface.Comment: 21 pages, 6 figure

    The vaginal-PVPA: A vaginal mucosa-mimicking in vitro permeation tool for evaluation of mucoadhesive formulations

    Get PDF
    Drug administration to the vaginal site has gained increasing attention in past decades, highlighting the need for reliable in vitro methods to assess the performance of novel formulations. To optimize formulations destined for the vaginal site, it is important to evaluate the drug retention within the vagina as well as its permeation across the mucosa, particularly in the presence of vaginal fluids. Herewith, the vaginal-PVPA (Phospholipid Vesicle-based Permeation Assay) in vitro permeability model was validated as a tool to evaluate the permeation of the anti-inflammatory drug ibuprofen from liposomal formulations (i.e., plain and chitosan-coated liposomes). Drug permeation was assessed in the presence and absence of mucus and simulated vaginal fluid (SVF) at pH conditions mimicking both the healthy vaginal premenopausal conditions and vaginal infection/pre-puberty/post-menopause state. The permeation of ibuprofen proved to depend on the type of formulation (i.e., chitosan-coated liposomes exhibited lower drug permeation), the mucoadhesive formulation properties and pH condition. This study highlights both the importance of mucus and SVF in the vaginal model to better understand and predict the in vivo performance of formulations destined for vaginal administration, and the suitability of the vaginal-PVPA model for such investigations

    Controlling magnetic exchange and anisotropy by non-magnetic ligand substitution in layered MPX3 (M = Ni, Mn; X = S, Se)

    Full text link
    Recent discoveries in two-dimensional (2D) magnetism have intensified the investigation of van der Waals (vdW) magnetic materials and further improved our ability to tune their magnetic properties. Tunable magnetism has been widely studied in antiferromagnetic metal thiophosphates MPX3. Substitution of metal ions M has been adopted as an important technique to engineer the magnetism in MPX3. In this work, we have studied the previously unexplored chalcogen X substitutions in MPX3 (M = Mn/Ni; X = S/Se). We synthesized the single crystals of MnPS3-xSex (0 < x < 3) and NiPS3-xSex (0 < x < 1.3) and investigated the systematic evolution of the magnetism with varying x. Our study reveals the effective tuning of magnetic interactions and anisotropies in both MnPS3 and NiPS3 upon Se substitution. Such efficient engineering of the magnetism provides a suitable platform to understand the low-dimensional magnetism and develop future magnetic devices

    Metformin and Myocardial Injury in Patients With Diabetes and ST-Segment Elevation Myocardial Infarction: A Propensity Score Matched Analysis

    Get PDF
    BACKGROUND: Although animal studies have documented metformin's cardioprotective effects, the impact in humans remains elusive. The study objective was to explore the association between metformin and myocardial infarct size in patients with diabetes presenting with ST‐segment elevation myocardial infarction. METHODS AND RESULTS: Data extraction used the National Cardiovascular Data CathPCI Registry in all patients with diabetes aged >18 years presenting with ST‐segment elevation myocardial infarction at 2 academic medical centers from January 2010 to December 2013. The exposure of interest was ongoing metformin use before the event. Propensity score matching was used for the metformin and nonmetformin groups on key prognostic variables. All matched pairs had acceptable D scores of <10%, confirming an efficient matching procedure. The primary outcome was myocardial infarct size, reflected by peak serum creatine kinase–myocardial band, troponin T, and hospital discharge left ventricular ejection fraction. Of all 1726 ST‐segment elevation myocardial infarction cases reviewed, 493 patients had diabetes (28.5%), with 208 metformin users (42.1%) and 285 nonusers. Matched pairs analysis yielded 137 cases per group. The difference between metformin and nonmetformin groups was −18.1 ng/mL (95% CI −55.0 to 18.8; P=0.56) for total peak serum creatine kinase–myocardial band and −1.1 ng/mL (95% CI −2.8 to 0.5; P=0.41) for troponin T. Median discharge left ventricular ejection fraction in both groups was 45, and the difference between metformin and nonmetformin users was 0.7% (95% CI −2.2 to 3.6; P=0.99). CONCLUSIONS: No statistically significant association of cardioprotection was found between metformin and myocardial infarct size in patients with diabetes and acute ST‐segment elevation myocardial infarction
    • 

    corecore