1,288 research outputs found
Anti-phase locking in a two-dimensional Josephson junction array
We consider theoretically phase locking in a simple two-dimensional Josephson
junction array consisting of two loops coupled via a joint line transverse to
the bias current. Ring inductances are supposed to be small, and special
emphasis is taken on the influence of external flux. Is is shown, that in the
stable oscillation regime both cells oscillate with a phase shift equal to
(i.e. anti-phase). This result may explain the low radiation output
obtained so far in two-dimensional Josephson junction arrays experimentally.Comment: 11 pages, REVTeX, 1 Postscript figure, Subm. to Appl. Phys. Let
Theory of phase-locking in generalized hybrid Josephson junction arrays
A recently proposed scheme for the analytical treatment of the dynamics of
two-dimensional hybrid Josephson junction arrays is extended to a class of
generalized hybrid arrays with ''horizontal'' shunts involving a capacitive as
well as an inductive component. This class of arrays is of special interest,
because the internal cell coupling has been shown numerically to favor in-phase
synchronization for certain parameter values. As a result, we derive limits on
the circuit design parameters for realizing this state. In addition, we obtain
formulas for the flux-dependent frequency including flux-induced switching
processes between the in-phase and anti-phase oscillation regime. The treatment
covers unloaded arrays as well as arrays shunted via an external load.Comment: 24 pages, REVTeX, 5 Postscript figures, Subm. to Phys. Rev.
Turnover of soil monosaccharides: Recycling versus Stabilization
Soil organic matter (SOM) represents a mixture of differently degradable compounds. Each of these compounds are characterised by different dynamics due to different chemical recalcitrance, transformation or stabilisation processes in soil. Carbohydrates represent one of these compounds and contribute up to 25 % to the soil organic matter. Vascular plants are the main source of pentose sugars (Arabinose and Xylose), whereas hexoses (Galactose and Mannose) are primarily produced by microorganisms. Several studies suggest that the mean turnover times of the carbon in soil sugars are similar to the turnover dynamics of the bulk carbon in soil.
The aim of the study is to characterise the influence of stabilisation and turnover of soil carbohydrates. Soil samples are collected from (i)a continuous maize cropping experiment (“Höhere Landbauschule” Rotthalmünster, Bavaria) established 1979 on a Stagnic Luvisol and (ii) from a continuous wheat cropping, established 1969, as reference site. The effect of stabilisation is estimated by the comparison of turnover times of microbial and plant derived soil carbohydrates. As the dynamics of plant derived carbohydrate are solely influenced by stabilisation processes, whereas the dynamics of microbial derived carbohydrates are affected by recycling of organic carbon compounds derived from C3 plant substrate as well as stabilisation processes.
The compound specific isotopic analysis (CSIA) of soil carbohydrates was performed using a HPLC/o/IRMS system. The chromatographic and mass spectrometric subunits were coupled with a LC–Isolink interface. Soil sugars were extracted after mild hydrolysis using 4 M trifluoroacetic acid (TFA)
Strong first order electroweak phase transition in the CP-conserving 2HDM revisited
The discovery of the Higgs boson by the LHC experiments ATLAS and CMS has marked a milestone for particle physics. Yet, there are still many open questions that cannot be answered within the Standard Model (SM). For example, the generation of the observed matter-antimatter asymmetry in the universe through baryogenesis can only be explained qualitatively in the SM. A simple extension of the SM compatible with the current theoretical and experimental constraints is given by the 2-Higgs-Doublet Model (2HDM) where a second Higgs doublet is added to the Higgs sector. We investigate the possibility of a strong first order electroweak phase transition in the CP-conserving 2HDM type I and type II where either of the CP-even Higgs bosons is identified with the SM-like Higgs boson. The renormalisation that we apply on the loop-corrected Higgs potential allows us to efficiently scan the 2HDM parameter space and simultaneously take into account all relevant theoretical and up-to-date experimental constraints. The 2HDM parameter regions found to be compatible with the applied constraints and a strong electroweak phase transition are analysed systematically. Our results show that there is a strong interplay between the requirement of a strong phase transition and collider phenomenology with testable implications for searches at the LHC
Deriving Boltzmann Equations from Kadanoff-Baym Equations in Curved Space-Time
To calculate the baryon asymmetry in the baryogenesis via leptogenesis
scenario one usually uses Boltzmann equations with transition amplitudes
computed in vacuum. However, the hot and dense medium and, potentially, the
expansion of the universe can affect the collision terms and hence the
generated asymmetry. In this paper we derive the Boltzmann equation in the
curved space-time from (first-principle) Kadanoff-Baym equations. As one
expects from general considerations, the derived equations are covariant
generalizations of the corresponding equations in Minkowski space-time. We find
that, after the necessary approximations have been performed, only the
left-hand side of the Boltzmann equation depends on the space-time metric. The
amplitudes in the collision term on the right--hand side are independent of the
metric, which justifies earlier calculations where this has been assumed
implicitly. At tree level, the matrix elements coincide with those computed in
vacuum. However, the loop contributions involve additional integrals over the
the distribution function.Comment: 14 pages, 5 figures, extended discussion of the constraint equations
and the solution for the spectral functio
- …