22 research outputs found

    Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides.

    Get PDF
    The major nutrients available to human colonic Bacteroides species are glycans, exemplified by pectins, a network of covalently linked plant cell wall polysaccharides containing galacturonic acid (GalA). Metabolism of complex carbohydrates by the Bacteroides genus is orchestrated by polysaccharide utilization loci (PULs). In Bacteroides thetaiotaomicron, a human colonic bacterium, the PULs activated by different pectin domains have been identified; however, the mechanism by which these loci contribute to the degradation of these GalA-containing polysaccharides is poorly understood. Here we show that each PUL orchestrates the metabolism of specific pectin molecules, recruiting enzymes from two previously unknown glycoside hydrolase families. The apparatus that depolymerizes the backbone of rhamnogalacturonan-I is particularly complex. This system contains several glycoside hydrolases that trim the remnants of other pectin domains attached to rhamnogalacturonan-I, and nine enzymes that contribute to the degradation of the backbone that makes up a rhamnose-GalA repeating unit. The catalytic properties of the pectin-degrading enzymes are optimized to protect the glycan cues that activate the specific PULs ensuring a continuous supply of inducing molecules throughout growth. The contribution of Bacteroides spp. to metabolism of the pectic network is illustrated by cross-feeding between organisms.This work was supported in part by an Advanced Grant from the European Research Council (Grant No. 322820) awarded to H.J.G. and B.H. supporting A.S.L., D.N., A.C. and N.T., a Wellcome Trust Senior Investigator Award to H.J.G. (grant No. WT097907MA) that supported J.B. and E.C.L. a European Union Seventh Framework Initial Training Network Programme entitled the “WallTraC project” (Grant Agreement number 263916) awarded to M-C.R. and H.J.G, which supported X.Z. and J.S. The Biotechnology and Biological Research Council project ‘Ricefuel’ (grant numbers BB/K020358/1) awarded to H.J.G. supported A.L

    Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota

    Get PDF
    International audienceSulfated glycans are ubiquitous nutrient sources for microbial communities that have co-evolved with eukaryotic hosts. Bacteria metabolise sulfated glycans by deploying carbohydrate sulfatases that remove sulfate esters. Despite the biological importance of sulfatases, the mechanisms underlying their ability to recognise their glycan substrate remain poorly understood. Here, we utilise structural biology to determine how sulfatases from the human gut microbiota recognise sulfated glycans. We reveal 7 new carbohydrate sulfatase structures span four S1 sulfatase subfamilies. Structures of S1_16 and S1_46 represent the first structures of these subfamilies. Structures of S1_11 and S1_15 demonstrate how non-conserved regions of the protein drive specificity towards related but distinct glycan targets. Collectively, these data reveal that Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-term

    A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation.

    Get PDF
    Glycans are major nutrients for the human gut microbiota (HGM). Arabinogalactan proteins (AGPs) comprise a heterogenous group of plant glycans in which a β1,3-galactan backbone and β1,6-galactan side chains are conserved. Diversity is provided by the variable nature of the sugars that decorate the galactans. The mechanisms by which nutritionally relevant AGPs are degraded in the HGM are poorly understood. Here we explore how the HGM organism Bacteroides thetaiotaomicron metabolizes AGPs. We propose a sequential degradative model in which exo-acting glycoside hydrolase (GH) family 43 β1,3-galactanases release the side chains. These oligosaccharide side chains are depolymerized by the synergistic action of exo-acting enzymes in which catalytic interactions are dependent on whether degradation is initiated by a lyase or GH. We identified two GHs that establish two previously undiscovered GH families. The crystal structures of the exo-β1,3-galactanases identified a key specificity determinant and departure from the canonical catalytic apparatus of GH43 enzymes. Growth studies of Bacteroidetes spp. on complex AGP revealed 3 keystone organisms that facilitated utilization of the glycan by 17 recipient bacteria, which included B. thetaiotaomicron. A surface endo-β1,3-galactanase, when engineered into B. thetaiotaomicron, enabled the bacterium to utilize complex AGPs and act as a keystone organism

    A single sulfatase is required to access colonic mucin by a gut bacterium

    Get PDF
    International audienceHumans have co-evolved with a dense community of microbial symbionts that inhabit the lower intestine. In the colon, secreted mucus creates a barrier that separates these microorganisms from the intestinal epithelium1. Some gut bacteria are able to utilize mucin glycoproteins, the main mucus component, as a nutrient source. However, it remains unclear which bacterial enzymes initiate degradation of the complex O-glycans found in mucins. In the distal colon, these glycans are heavily sulfated, but specific sulfatases that are active on colonic mucins have not been identified. Here we show that sulfatases are essential to the utilization of distal colonic mucin O-glycans by the human gut symbiont Bacteroides thetaiotaomicron. We characterized the activity of 12 different sulfatases produced by this species, showing that they are collectively active on all known sulfate linkages in O-glycans. Crystal structures of three enzymes provide mechanistic insight into the molecular basis of substrate specificity. Unexpectedly, we found that a single sulfatase is essential for utilization of sulfated O-glycans in vitro and also has a major role in vivo. Our results provide insight into the mechanisms of mucin degradation by a prominent group of gut bacteria, an important process for both normal microbial gut colonization2 and diseases such as inflammatory bowel diseas

    An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins

    No full text
    The human gut microbiota utilizes complex carbohydrates as major nutrients. The requirement for efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that this microbial ecosystem represents a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis we screened the potential enzymatic functions of hypothetical proteins encoded by genes of Bacteroides thetaiotaomicron that were up-regulated by arabinogalactan proteins or AGPs. Although AGPs are ubiquitous in plants, there is a paucity of information on their detailed structure, the function of these glycans in planta, and the mechanisms by which they are depolymerized in microbial ecosystems. Here we have discovered a new polysaccharide lyase family that is specific for the L-rhamnose-alpha 1,4-D-glucuronic acid linkage that caps the side chains of complex AGPs. The reaction product generated by the lyase, Delta 4,5-unsaturated uronic acid, is removed from AGP by a glycoside hydrolase located in family GH105, producing the final product 4-deoxy-beta-L-threo-hex-4-enepyranosyl- uronic acid. The crystal structure of a member of the novel lyase family revealed a catalytic domain that displays an (alpha/alpha)(6) barrel-fold. In the center of the barrel is a deep pocket, which, based on mutagenesis data and amino acid conservation, comprises the active site of the lyase. A tyrosine is the proposed catalytic base in the beta-elimination reaction. This study illustrates how highly complex glycans can be used as a scaffold to discover new enzyme families within microbial ecosystems where carbohydrate metabolism is a major evolutionary driver

    An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins

    No full text
    The human gut microbiota utilizes complex carbohydrates as major nutrients. The requirement for efficient glycan degrading systems exerts a major selection pressure on this microbial community. Thus, we propose that this microbial ecosystem represents a substantial resource for discovering novel carbohydrate active enzymes. To test this hypothesis we screened the potential enzymatic functions of hypothetical proteins encoded by genes of Bacteroides thetaiotaomicron that were up-regulated by arabinogalactan proteins or AGPs. Although AGPs are ubiquitous in plants, there is a paucity of information on their detailed structure, the function of these glycans in planta, and the mechanisms by which they are depolymerized in microbial ecosystems. Here we have discovered a new polysaccharide lyase family that is specific for the L-rhamnose-α1,4-D-glucuronic acid linkage that caps the side chains of complex AGPs. The reaction product generated by the lyase, Δ4,5-unsaturated uronic acid, is removed from AGP by a glycoside hydrolase located in family GH105, producing the final product 4-deoxy-β-L-threo-hex-4-enepyranosyl-uronic acid. The crystal structure of a member of the novel lyase family revealed a catalytic domain that displays an (α/α)6 barrel-fold. In the center of the barrel is a deep pocket, which, based on mutagenesis data and amino acid conservation, comprises the active site of the lyase. A tyrosine is the proposed catalytic base in the β-elimination reaction. This study illustrates how highly complex glycans can be used as a scaffold to discover new enzyme families within microbial ecosystems where carbohydrate metabolism is a major evolutionary driver

    Structure of the major carrot allergen Dau c 1

    No full text
    Dau c 1 is a major allergen of carrot ( Daucus carota) which displays IgE cross-reactivity with the homologous major birch-pollen allergen Bet v 1. The crystal structure of Dau c 1 has been determined to a resolution of 2.7 angstrom, revealing tight dimers. The structure of Dau c 1 is similar to those of the major allergens from celery, Api g 1, and birch pollen, Bet v 1. Electron density has been observed in the hydrophobic cavity of each monomer and has been modelled with polyethylene glycol oligomers of varying length. Comparison of the surface topology and physicochemical properties of Dau c 1 and Bet v 1 revealed that they may have some, but not all, epitopes in common. This is in agreement with the observation that the majority of carrot-allergic patients have Bet v 1 cross-reactive IgE antibodies, whereas others have Dau c 1-specific IgE antibodies which do not recognize Bet v 1

    Copper-binding properties and structures of methanobactins from methylosinus trichosporium ob3b

    No full text
    Methanobactins (mbs) are a class of copper-binding peptides produced by aerobic methane oxidizing bacteria (methanotrophs) that have been linked to the substantial copper needs of these environmentally important microorganisms. The only characterized mbs are those from Methylosinus trichosporium OB3b and Methylocystis strain SB2. M. trichosporium OB3b produces a second mb (mb-Met), which is missing the C-terminal Met residue from the full-length form (FL-mb). The as-isolated copper-loaded mbs bind Cu(I). The absence of the Met has little influence on the structure of the Cu(I) site, and both molecules mediate switchover from the soluble iron methane mono-oxygenase to the particulate copper-containing enzyme in M. trichosporium OB3b cells. Cu(II) is reduced in the presence of the mbs under our experimental conditions, and the disulfide plays no role in this process. The Cu(I) affinities of these molecules are extremely high with values of (6−7) × 1020 M−1 determined at pH ≥ 8.0. The affinity for Cu(I) is 1 order of magnitude lower at pH 6.0. The reduction potentials of copper-loaded FL-mb and mb-Met are 640 and 590 mV respectively, highlighting the strong preference for Cu(I) and indicating different Cu(II) affinities for the two forms. Cleavage of the disulfide bridge results in a decrease in the Cu(I) affinity to 9 × 1018 M−1 at pH 7.5. The two thiolates can also bind Cu(I), albeit with much lower affinity ( 3 × 1015 M−1 at pH 7.5). The high affinity of mbs for Cu(I) is consistent with a physiological role in copper uptake and protection

    Uptake of monoaromatic hydrocarbons during biodegradation by FadL channel-mediated lateral diffusion

    No full text
    In modern societies, biodegradation of hydrophobic pollutants generated by industry is important for environmental and human health. In Gram-negative bacteria, biodegradation depends on facilitated diffusion of the pollutant substrates into the cell, mediated by specialised outer membrane (OM) channels. Here we show, via a combined experimental and computational approach, that the uptake of monoaromatic hydrocarbons such as toluene in Pseudomonas putida F1 (PpF1) occurs via lateral diffusion through FadL channels. Contrary to classical diffusion channels via which polar substrates move directly into the periplasmic space, PpF1 TodX and CymD direct their hydrophobic substrates into the OM via a lateral opening in the channel wall, bypassing the polar barrier formed by the lipopolysaccharide leaflet on the cell surface. Our study suggests that lateral diffusion of hydrophobic molecules is the modus operandi of all FadL channels, with potential implications for diverse areas such as biodegradation, quorum sensing and gut biolog
    corecore