65 research outputs found

    TP53 and MDM2 single nucleotide polymorphisms influence survival in non-del(5q) myelodysplastic syndromes

    Get PDF
    Abstract:P53 is a key regulator of many cellular processes and is negatively regulated by the human homolog of murine double minute-2 (MDM2) E3 ubiquitin ligase. Single nucleotide polymorphisms (SNPs) of either gene alone, and in combination, are linked to cancer susceptibility, disease progression, and therapy response. We analyzed the interaction of TP53 R72P and MDM2 SNP309 SNPs in relationship to outcome in patients with myelodysplastic syndromes (MDS). Sanger sequencing was performed on DNA isolated from 208 MDS cases. Utilizing a novel functional SNP scoring system ranging from +2 to -2 based on predicted p53 activity, we found statistically significant differences in overall survival (OS) (p = 0.02) and progression-free survival (PFS) (p = 0.02) in non-del(5q) MDS patients with low functional scores. In univariate analysis, only IPSS and the functional SNP score predicted OS and PFS in non-del(5q) patients. In multivariate analysis, the functional SNP score was independent of IPSS for OS and PFS. These data underscore the importance of TP53 R72P and MDM2 SNP309 SNPs in MDS, and provide a novel scoring system independent of IPSS that is predictive for disease outcome

    The relationship of TP53 R72P polymorphism to disease outcome and TP53 mutation in myelodysplastic syndromes

    Get PDF
    Nonsynonymous TP53 exon 4 single-nucleotide polymorphism (SNP), R72P, is linked to cancer and mutagen susceptibility. R72P associations with specific cancer risk, particularly hematological malignancies, have been conflicting. Myelodysplastic syndrome (MDS) with chromosome 5q deletion is characterized by erythroid hypoplasia arising from lineage-specific p53 accumulation resulting from ribosomal insufficiency. We hypothesized that apoptotically diminished R72P C-allele may influence predisposition to del(5q) MDS. Bone marrow and blood DNA was sequenced from 705 MDS cases (333 del(5q), 372 non-del(5q)) and 157 controls. Genotype distribution did not significantly differ between del(5q) cases (12.6% CC, 38.1% CG, 49.2% GG), non-del(5q) cases (9.7% CC, 44.6% CG, 45.7% GG) and controls (7.6% CC, 37.6% CG, 54.8% GG) (P = 0.13). Allele frequency did not differ between non-del(5q) and del(5q) cases (P = 0.91) but trended towards increased C-allele frequency comparing non-del(5q) (P = 0.08) and del(5q) (P = 0.10) cases with controls. Median lenalidomide response duration increased proportionate to C-allele dosage in del(5q) patients (2.2 (CC), 1.3 (CG) and 0.89 years (GG)). Furthermore, C-allele homozygosity in del(5q) was associated with prolonged overall and progressionfree survival and non-terminal interstitial deletions that excluded 5q34, whereas G-allele homozygozity was associated with inferior outcome and terminal deletions involving 5q34 (P = 0.05). These findings comprise the largest MDS R72P SNP analysis

    Changing the Pathobiological Paradigm in Myelodysplastic Syndromes: The NLRP3 Inflammasome Drives the MDS Phenotype

    Get PDF
    Note: Portions of this abstract have been previously published in the journal Blood, Basiorka et al. Blood. 2016 Oct 13, and has been reproduced in this manuscript with permission from the publisher. Myelodysplastic syndromes (MDS) are genetically diverse hematopoietic stem cell malignancies that share a common phenotype of cytological dysplasia, ineffective hematopoiesis and aberrant myeloid lineage maturation. Apoptotic cell death potentiated by inflammatory cytokines has been considered a fundamental feature of MDS for over two decades. However, this non-inflammatory form of cell death cannot account for the inflammatory nature of these disorders. We report that a hallmark of lower-risk (LR) MDS is activation of the NLRP3 inflammasome, which drives clonal expansion and pyroptosis, a caspase-1-dependent programmed cell death induced by danger-associated molecular pattern (DAMP) signals. Independent of genotype, MDS hematopoietic stem and progenitor cells (HSPC) overexpress pyroptosis-related transcripts, inflammasome proteins and manifest activated NLRP3 inflammasome complexes that direct caspase-1 activation, IL-1β and IL-18 maturation and pyroptotic cell death. Using the S100A9 transgenic (S100A9Tg) mouse model that phenocopies human MDS, we demonstrated that forced expression of S100A9 was sufficient to drive pyroptosis in vivo, implicating pyroptosis as the principal mechanism of HSPC cell death in S100A9Tg mice. The lytic cell death releases intraceullar contents that include alarmins and catalytically active ASC specks, which can propagate bystander inflammation. Notably, MDS mesenchymal stromal cells (MSC) and stromal-derived linages were found to predominantly undergo pyroptosis, with marked activation of caspase-1 and NLRP3 inflammasome complexes. These findings may account for the clusters of both HSPC and stromal cell death previously described in the bone marrows of patients with MDS. Mechanistically, pyroptosis is triggered by the alarmin S100A9 that is found in excess in MDS HSPC and bone marrow (BM) plasma. Further, both somatic gene mutations and S100A9-induced signaling activate NADPH oxidase (NOX), generating reactive oxygen species (ROS) that initiate cation influx, cell swelling and β-catenin activation. Accordingly, ROS and active β-catenin were significantly increased in MDS BM mononuclear cells (BM-MNC) and S100A9Tg mice compared to normal controls, as well as in human cell lines harboring gene mutations and in murine models of gene mutation knock-in or gene loss. ROS and β-catenin nuclear translocation were significantly reduced by NLRP3 or NOX inhibition, indicating that S100A9 and somatic gene mutations prime cells to undergo NOX1/4-dependent NLRP3 inflammasome assembly, pyroptosis and β-catenin activation. Together, these data explain the concurrent proliferation and inflammatory cell death characteristic of LR-MDS. Given that loss of a gene-rich area in del(5q) disease results in derepression of innate immune signaling, we hypothesized that this genetic deficit would trigger assembly of the NLRP3 inflammasome complex, akin to the pathobiological mechanism characteristic of non-del(5q) MDS. To this end, we utilized two distinct murine models of del(5q) disease, namely in the context of Rps14 haploinsufficiency and concurrent loss of mDia1 and microRNA (miR)-146a. In both models, pyroptosis was not evident in the HSPC compartment; however, early erythroid progenitors displayed high fractions of pyroptotic cells. This was associated with significant increases in caspase-1 and NLRP3 inflammasome activation, ROS and nuclear localization of β-catenin, which was extinguished by inflammasome or NOX complex inhibition. These data suggest that early activation of the inflammasome drives cell death and prevents terminal maturation of erythroid precursors, accounting for the progressive anemia characteristic of del(5q) disease, whereby hematopoietic defects are primarily restricted to the erythroid compartment. Importantly, these data implicate a similar pathobiological mechanism in del(5q) MDS as is observed in non-del(5q) patients. The identification of the NLRP3 inflammasome as a pathobiological driver of the LR non-del(5q) and del(5q) MDS phenotype allows for novel therapeutic agent development. Notably, knockdown of NLRP3 or caspase-1, neutralization of S100A9, and pharmacologic inhibition of NLRP3 or NOX suppresses pyroptosis, ROS generation and nuclear β-catenin in MDS, and are sufficient to restore effective hematopoiesis. In del(5q) murine models, inhibition of the NLRP3 inflammasome significantly improved erythroid colony forming capacity by a mechanism distinct from that of lenalidomide, highlighting the translational potential for targeting this innate immune complex in this subset of MDS. Thus, alarmins and founder gene mutations in MDS license a common redox-sensitive inflammasome circuit, which suggests new avenues for therapeutic intervention. Furthermore, aggregated clusters of the NLRP3 adaptor protein ASC [apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (CARD)] are referred to as ASC specks. During pyroptosis, ASC specks are released from dying cells and function as DAMP signals that propagate inflammation. In this way, specks are a surrogate marker for NLRP3 inflammasome activation and pyroptotic cell death. Given that pyroptosis is the predominant mechanism of cell death in MDS and ASC specks are readily quantified by flow cytometry, we hypothesized that BM or peripheral blood (PB) plasma-derived ASC specks may be a biologically rational biomarker for the diagnosis of MDS. The percentage of ASC specks were significantly increased in MDS BM plasma compared to normal, healthy donors, which was validated by confocal microscopy. PB plasma-derived ASC specks were significantly greater in LR- versus HR-MDS, consistent with the greater extent of cell death and myeloid-derived suppressor cell (MDSC) expansion in LR disease. As hyperglycemia induces NLRP3 inflammasome activation, plasma glucose levels were measured to adjust for this confounding variable. Subsequently, the percentage of glucose-adjusted, PB plasma-derived ASC specks was measured in a panel of specimens of varied hematologic malignancies. The corrected percentage of ASC specks was significantly increased in MDS compared to normal donors and to each other malignancy investigated, including other myeloid and lymphoid leukemias, myeloproliferative neoplasms and overlap syndromes, like chronic myelomonocytic leukemia (CMML). These data indicate that the glucose-adjusted ASC speck percentage is MDS-specific and may be a valuable diagnostic biomarker. At a cutoff of 0.039, the biomarker minimizes misclassification error and achieves 95% sensitivity and 82% specificity in classifying MDS from normal donors, other hematologic malignancies and T2D. Lastly, the biomarker declined with treatment response to lenalidomide in LR-MDS patients, but not to erythropoietin stimulating agent (ESA) or hypomethylating agent (HMA) therapy. As such, the percentage of ASC specks represents the first biologically rational, diagnostic biomarker for MDS that can be implemented with current diagnostic practices to reduce diagnostic error

    Valuation of intellectual property as an example of a right of protection for a trademark.

    No full text
    Celem niniejszej pracy jest dokonanie dokładniejszej teoretycznej i praktycznej analizy problematyki wyceny własności intelektualnej. W pracy zgłębiona od strony ekonomicznej została problematyka własności intelektualnej w przedsiębiorstwie oraz ukazanie jej istotnej roli w rozwoju przedsiębiorstwa.W szczególności chodzi tu o wartość ekonomiczną, praw wyłącznych (praw ochronnych, praw z rejestracji, patentów) jakie uzyskują przedsiębiorstwa, dla ochrony poszczególnych składników niematerialnych, w tym znaków towarowych. W pracy rozważony został problem wyceny znaku towarowego a raczej prawa ochronnego na znak towarowy jako znaczącego czynnika w przedsiębiorstwie oraz marki jako pewnego szerszego określenia stosowanego dla określenia całości image przedsiębiorstwa, głównie od strony wyobrażeń klientów o przedsiębiorstwie, jego usługach i towarach. Celem pracy jest również zweryfikowanie, czy dla wyceny znaków towarowych zostały wykształcone jakieś szczególne metody wyceny, a jeśli nie jakie z istniejących metod są najczęściej stosowane do wyceny aktywów niematerialnych przedsiębiorstwa, a w szczególności prawa ochronnego na znak towarowy. Jako przykład wybrałam znak towarowy, ponieważ jest on bardzo charakterystycznym aktywem dla każdego przedsiębiorstwa i posiada wiele możliwości marketingowych, handlowych i komercyjnych. W szczególności interesująca jest jego wartość ekonomiczna, którą można wycenić i wyrazić w wartości pieniężnej. Temu właśnie aspektowi poświęcona jest niniejsza praca.Praca podzielona została na pięć rozdziałów. W pierwszym rozdziale pracy skupię się na znaku towarowym: czym jest, jego ochronie, funkcjach oraz jego możliwościach i korzyściach jakie płyną z posiadania prawa ochronnego na znak towarowy.W kolejnym rozdziale opiszę krótko, czym jest wycena. Przybliżę jej historię rozwoju na przestrzeni wielu lat.W trzecim rozdziale scharakteryzuję metody wyceny własności intelektualnej. W oparciu o literaturę przedstawione zostały metody wyceny własności intelektualnej jakimi są metoda kosztowa, metoda rynkowa oraz metoda dochodowa. Ostatni rozdział to próba wyceny przedsiębiorstwa i jego znaku towarowego, które od wielu lat funkcjonuje na polskim rynku i której znak towarowy, jakim jest logo, jest nie tylko rozpoznawane w Polsce, ale i poza jej granicami.The main purpose of this paper was to make more specific theoretical and practical analysis of the intellectual property valuation issue. In the field of economic research, the issue of intellectual property in the enterprise has been explored as well as its important role in the development of the enterprise. In particular the economic value of exclusive rights ( protective rights, registration rights, patents), which enterprise can manage to protect individual intangible factors, therein trademarks.This paper also investigates a problem of valuing trademark or more specific - a right of protection for a trademark - as a significant factor in enterprise and also brand as a wider definition used for defining the whole image of the enterprise, mainly from the perspective of customers imagination about the company, its services, and goods.The purpose of this paper was also verifying if for valuing intellectual property exist special valuing methods and if not, which of existing methods are the most common to use to value intangible assets of an enterprise, in particular, rights of protection for a trademark. As an example, I chose trademark, because it is a very characteristic asset for each enterprise and he has a lot of market and commercial abilities. Paper is divided into five chapters. The first chapter is focused on the trademark: what exactly trademark is, its protection and functions likewise capabilities and benefits of owning a trademark right. Next chapter briefly describes what the valuation is, presenting its development story over many years. The third chapter includes methods of valuing intellectual property such as cost method, market method and income method all of which are based on the literature. The last chapter is an attempt to evaluate the company and its trademark, which has been operating on the Polish market for many years and whose trademark, which is a logo, is not only recognized in Poland but also abroad
    corecore