170 research outputs found

    Insólita espessura de uma sucessão de lençol de areia: Formação Bandeirinha, Proterozoico, Minas Gerais

    Get PDF
    CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORSome present-day eolian sand sheets have small and width dunes, called zibars, as common type of depositional morphology. Their formation is related to different stabilizing factors, which reduce the availability of clastic materials for eolian processes. In fact, zibars are dunes which do not have time to develop a larger dune with slipface (proto-dune). Dunes in sands sheet areas generally are constructed by wind ripple laminations and commonly generate sedimentary succession less than 20 m thick, which are the consequence of low sand supply. This study deals with an uncommon eolian sand sheet sedimentary succession more than 50 m thick, Proterozoic in age, known as Bandeirinha Formation. This paper tries to explain the anomalous thick of this sand sheet sedimentary succession. High thickness was probably the result of a high input of sand material, combine with low availability of sand, thus allowing the only construction of proto-dunes (zibars). Early cementation, due to near-surface evaporation of saline water, has been proposed as main factor that reduced the sand availability into this eolian system. Finally, the subsidence processes related to the first stage of rift Espinhaco Basin must have generated the accommodation space to preserve the sand sheet succession.Some present-day eolian sand sheets have small and width dunes, called zibars, as common type of depositional morphology. Their formation is related to different stabilizing factors, which reduce the availability of clastic materials for eolian processes. In fact, zibars are dunes which do not have time to develop a larger dune with slipface (proto-dune). Dunes in sands sheet areas generally are constructed by wind ripple laminations and commonly generate sedimentary succession less than 20 m thick, which are the consequence of low sand supply. This study deals with an uncommon eolian sand sheet sedimentary succession more than 50 m thick, Proterozoic in age, known as Bandeirinha Formation. This paper tries to explain the anomalous thick of this sand sheet sedimentary succession. High thickness was probably the result of a high input of sand material, combine with low availability of sand, thus allowing the only construction of proto-dunes (zibars). Early cementation, due to near-surface evaporation of saline water, has been proposed as main factor that reduced the sand availability into this eolian system. Finally, the subsidence processes related to the first stage of rift Espinhaco Basin must have generated the accommodation space to preserve the sand sheet succession.4511311CAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORsem informaçãoEm alguns lençóis de areia eólica atuais existem dunas pequenas e largas, chamadas zibars, como tipo comum de morfologia deposicional. Sua formação é relacionada a diferentes fatores de estabilização, os quais reduzem a disponibilidade de materiais clásticos para os processos eólicos. De fato, os zibars são dunas que não tiveram tempo para se desenvolver como grandes dunas (protodunas). As dunas dos lençóis de areia (zibars) geralmente são construídas por laminações de marcas onduladas de vento e comumente geram sucessões com menos de 20 m de espessura, consequência da baixa oferta de sedimento. Este estudo trata de uma sucessão sedimentar com depósitos de lençóis de areia de espessuras incomuns, com mais do que 50 m de espessura, encontrados na Formação Bandeirinha, de idade Proterozoica. Este trabalho tenta explicar essas espessuras anômalas de depósitos de lençol de areia. A elevada espessura desses depósitos deve-se provavelmente ao grande aporte de material clástico no sistema, combinado com a baixa disponibilidade de sedimentos, que não permitiu a formação de dunas com faces de deslizamento, mas somente de protodunas (zibars). Cimentação precoce, causada pela evaporação de água salina próxima à superfície, tem sido proposta como principal fator para a redução da disponibilidade de areia neste sistema eólico. Finalmente, os processos de subsidência relacionada aos primeiros estágios de rifteamento da Bacia Espinhaço devem ter gerado o espaço de acomodação para preservar a sucessão de lençol de areia

    Desenvolvimento do lençol de areia eólica intermontano do Alto Vale do Tulum, centro-oeste da Argentina

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOThe intermontane Upper Tulum eolian sand sheet covers an area of ca. 125 km(2) at north of the San Juan Province, central-western Argentina. The sand sheet is currently an aggrading system where vegetation cover, surface cementation and periodic flooding withhold the development of dunes with slipfaces. The sand sheet surface is divided into three parts according to the distribution of sedimentary features, which reflects the variation in sediment budget, water table level and periodic flooding. The central sand sheet part is the main area of eolian deposition and is largely stabilized by vegetation. The sedimentary succession is 4 m thick and records the vertical interbedding of eolian and subaqueous deposits, which have been deposited for at least 3.6 ky with sedimentation rates of 86.1 cm/ky. The construction of the sand sheet is associated with deflation of the sand-graded debris sourced by San Juan alluvial fan, which is available mainly in drier fall-winter months where water table is lower and wind speeds are periodically above the threshold velocity for sand transport. The accumulation of sedimentary bodies occurs in a stabilized eolian system where vegetation cover, thin mud veneers and surface cementation are the main agents in promoting accumulation. The preservation of the sand sheet accumulations is enabled by the progressive creation of the accommodation space in a tectonically active basin and the continuous burial of geological bodies favored by high rates of sedimentation.The intermontane Upper Tulum eolian sand sheet covers an area of ca. 125 km(2) at north of the San Juan Province, central-western Argentina. The sand sheet is currently an aggrading system where vegetation cover, surface cementation and periodic flooding withhold the development of dunes with slipfaces. The sand sheet surface is divided into three parts according to the distribution of sedimentary features, which reflects the variation in sediment budget, water table level and periodic flooding. The central sand sheet part is the main area of eolian deposition and is largely stabilized by vegetation. The sedimentary succession is 4 m thick and records the vertical interbedding of eolian and subaqueous deposits, which have been deposited for at least 3.6 ky with sedimentation rates of 86.1 cm/ky. The construction of the sand sheet is associated with deflation of the sand-graded debris sourced by San Juan alluvial fan, which is available mainly in drier fall-winter months where water table is lower and wind speeds are periodically above the threshold velocity for sand transport. The accumulation of sedimentary bodies occurs in a stabilized eolian system where vegetation cover, thin mud veneers and surface cementation are the main agents in promoting accumulation. The preservation of the sand sheet accumulations is enabled by the progressive creation of the accommodation space in a tectonically active basin and the continuous burial of geological bodies favored by high rates of sedimentation451197115FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP [2007/00140-6]CNPq [142651/2008-7]sem informaçãosem informaçãoO lençol de areia eólica intermontano do Alto Vale do Tulum é uma área em sedimentação de ca. 125 km² desenvolvida ao norte da província de San Juan, no centro-oeste da Argentina. Nesse lençol de areia eólica, a presença de cobertura vegetal, cimentação superficial e inundações periódicas inibem o desenvolvimento de dunas de grande porte com faces de avalhancha. A área de deposição é individualizada em três setores: sul, central e norte e é caracterizada por diferentes processos sedimentares que variam de acordo com a disponibilidade sedimentar, nível do lençol freático e periodicidade de inundações pluviais. A região central é a principal área de deposição e apresenta a maior cobertura vegetal. A sucessão sedimentar nessa área possui 4 m de espessura e mostra alternâncias verticais entre depósitos eólicos e subaquosos, que ocorrem por ao menos 3,6 ka, com taxas de sedimentação de aproximadamente 86,1 cm/10³ anos. A construção do lençol de areia é mantida pela conjunção de fatores que incluem o contínuo suprimento de sedimentos derivados da deflação de depósitos residuais do leque aluvial do rio San Juan, somados a sazonal disponibilidade sedimentar e alta capacidade de transporte dos ventos. A acumulação dos corpos geológicos ocorre associada à atuação de fatores de estabilização da superfície de acumulação, como vegetação, presença de níveis lamíticos e cimentação superficial. A preservação do sistema eólico é favorecida por altas taxas de criação de espaço de acomodação, em bacia tectonicamente ativa, e por altas taxas de sedimentação, que propiciam o contínuo soterramento dos corpos geológico

    A Prodeltaic System Controlled By Hyperpycnal Flows And Storm Waves: Reinterpretation Of The Punta Negra Formation (lower-middle Devonian, Argentine Precordillera)

    Get PDF
    The Punta Negra Formation (FPN) constitutes a Lower-Middle Devonian sandstone unit located in the Argentine Precordillera. Based on detailed facies and ichnological analyses, this unit, which had been previously interpreted as a deep-water system, has been reinterpreted in this study as a prodelta system, in which the distribution and sedimentation of the clastic deposits were controlled by hyperpycnal flows associated with storms. Five lithofacies attest the deposition by unidirectional hyperpycnal flows combined with storm-generated oscillatory flows. Fossil traces testify variable energetic conditions of the depositional system with the colonization of opportunistic organisms immediately after the deposition of high energy combined flows and the colonization of more specialized organisms during the long low-energy periods. Three architectural elements, deposited from coastline to offshore, have been recognized: 1) Channelized sandstone, composed of the thickest and coarsest sandstone beds and interpreted as the proximal portion deposited close to the mouth of the distributaries of the delta system; 2) Tabular sandstone, which are composed of combined and oscillatory flow deposits with lesser thickness, grain size and spacing of the undulated bed forms; 3) Tabular sandstone interbedded to mudstone, which represents the most distal architectural element and is composed of thin sandstone and thicker mudstone strata, deposited by low-energy combined flows.434673694Allen, J.R.L., (1984) Sedimentary Structures: Their Character and Physical Basis, p. 663. , Amsterdam, ElsevierArnott, R.W.C., Quasi-planar-laminated sandstone beds of the Lower Cretaceous Bootlegger Member, north-central Montana: Evidence of combined-flow sedimentation (1993) Journal of Sedimentary Petrology, 63 (3), pp. 488-494Arnott, R.W.C., Southard, J.B., Exploratory flow-duct experiments on combined flow bed configurations, and some implications for interpreting storm-event stratification (1990) Journal of Sedimentary Petrology, 60, pp. 211-219Basilici, G., De Luca, P.H.V., Oliveira, E.P., A depositional model for a wave-dominated open-coast tidal flat, based on analyses of the Cambrian-Ordovician Lagarto and Palmares formations, northeastern Brazil (2012) Sedimentology, 59, pp. 1613-1639Basilici, G., De Luca, P.H.V., Poiré, D.G., (2012) Hummocky Crossstratification-Like Structures and Combined-flow Ripples in the Punta Negra Formation (Lower-Middle Devonian, Argentine Precordillera): A Turbiditic Deep-water or Storm-dominated Prodelta Inner-shelf System?, pp. 73-92. , Sedimentary Geology 267-268Baucon, A., Neto De Carvalho, C., From the river to the sea: Pramollo a new ichnolagerstätte from the Carnic Alps (Carboniferous, Italy-Austria) (2008) Studi Trentini di Scienze Naturali Acta Geologica, 83, pp. 87-114Bhattacharya, H.N., Bhattacharya, B., Storm event beds in a Paleoproterozoic Rift Basin, Aravalli Supergroup, Rajasthan, India (2005) Gondwana Research, 8 (2), pp. 231-239. , DOI 10.1016/S1342-937X(05)71121-7Bhattacharya, H.N., Bhattacharya, B., Chakraborty, I., Chakraborty, A., Sole marks in storm event beds in the Permo-Carboniferous Talchir Formation, Raniganj Basin, India (2004) Sedimentary Geology, 166 (3-4), pp. 209-222. , DOI 10.1016/j.sedgeo.2003.12.003, PII S0037073803003713Brenchley, P.J., Newall, G., Storm-influenced inner-shelf sand lobes in the Caradoc (Ordovician) of Shropshire, England (1982) Journal of Sedimentary Petrology, 52, pp. 1257-1269Bridge, J.S., Description and interpretation of fluvial deposits: A critical perspective (1993) Sedimentology, 40 (4), pp. 801-810Buatois, L., Mángano, M.G., (2011) Ichnology: Organism-Substrate Interactions in Space and Time, p. 358. , Cambridge, Cambridge. University PressBustos, U., Astini, R.A., Formación Punta Negra: análisis secuencial y evolución de la Cuenca Devónica Precordillerana (1997) Revista de la Asociación Geológica Argentina, 4, pp. 97-109Bustos, U., Modelo sedimentário alternativo para el Devónico de la Precordillera central sanjuanina: Formación Punta Negra (1996) Revista de la Asociación Geológica Argentina, 3, pp. 17-30Cheel, R.J., Leckie, D.A., (1993) Hummocky Cross-stratification, pp. 103-122. , Wright V.P. (ed. Sedimentology Review. Oxford Blackwell ScienceCraft, R.J., Bridge, J.S., (1987) Shallow-marine Sedimentary Processes in the Late Devonian Catskill Sea, 98, pp. 338-355. , New York State, Geological Society of America BulletinCuerda, A.J., Arrondo, O., Morel, E., Spalletti, L.A., Procesos de continentalizacion en el Devónico de la Precordillera (1990) Revista Del Musel de la Plata, 10, pp. 185-195Dott, R.H., Bourgeois, J., (1982) Hummocky Stratification: Significance of Its Variable Bedding Sequences, 93, pp. 663-680. , Geological Society of America BulletinDuke, W.L., Geostrophic circulation or shallow marine turbidity currents? the dilemma of paleoflow patterns in storm-influenced prograding shoreline systems (1990) Journal of Sedimentary Petrology, 60, pp. 870-883Dumas, S., Arnott, R.W.C., Southard, J.B., Experiments on oscillatory-flow and combined-flow bed forms: Implications for interpreting parts of the shallow-marine sedimentary record (2005) Journal of Sedimentary Research, 75 (3), pp. 501-513. , DOI 10.2110/jsr.2005.039Dzulynski, S., New data on experimental production of sedimentary structures (1965) Journal of Sedimentary Petrology, 35, pp. 196-212Edwards, D., Poiré, D.G., Morel, E.M., Cingolani, C.A., (2009) Plant Assemblages from SW Gondwana: Further Evidence for High-latitude Vegetation in the Devonian of Argentina, 325, pp. 233-255. , Bassett M.G. (ed. Early Palaeozoic peri-Gondwana terranes: new insights from tectonics and biogeography Geological Society of London Special Publications, LondonEmmons, E., (1844) The Taconic System: Based on Observations in New York Massachusetts, Maine, Vermont and Rhode Island, p. 68. , Albany, Caroll and CookFigueiredo, A.G., Response of water column to strong wind forcing, southern Brazil inner shelf: Implications for sand ridge formation (1980) Marine Geology, 35, pp. 367-376Frey, R.W., Pemberton, S.G., (1984) Trace Fossil Facies Models., pp. 189-207. , Walker R.G. (ed. Facies Models (2nd ed.). Geoscience Canada, Reprint Series IGonzales Bonorino, G., Middleton, G.V., A Devonian submarine fan in western Argentina (1976) Journal of Sedimentary Petrology, 46, pp. 56-69Haldeman, S.S., Supplement to number one of a monograph of the Limniades and other freshwater bivalve shells of the apparently new animals in different classes, and names and characters of the subgenera in Paludina and Anculosa, Philadelphia (1840) Philadelphia, 1, pp. 1-3Hall, J., (1847) Palæontology of New-York, 1, p. 338. , Albany, C. van BenthuysenHall, J., (1852) Paleontology of New York, 2, p. 362. , Albany, C. van BenthuysenHamblin, A.P., Walker, R.G., Storm-dominated shallow marine deposits: The Fernie-Kootenany (Jurassic) transition, southern Rocky Mountains (1979) Canadian Journal of Earth Science, 16, pp. 1673-1690Harms, J.C., Southard, J.B., Spearing, D.R., Walker, R.G., (1975) Depositional Environments As Interpreted from Primary Sedimentary Structures and Stratification Sequences, p. 161. , SEPM Short Course 2, Calgary, Society of Economic Paleontologists and MineralogistsHiggs, R., The bude formation (Lower Westphalian), SW England: Siliciclastic shelf sedimentation in a large equatorial lake (1991) Sedimentology, 38, pp. 445-469Ito, M., Ishigaki, A., Nishikawa, T., Saito, T., Temporal variation in the wavelength of hummocky cross-stratification: Implications for storm intensity through Mesozoic and Cenozoic (2001) Geological Society of America, 29, pp. 87-89Keller, M., Argentine Precordillera: Sedimentary and plate tectonic history of a Laurentian crustal fragment in South America (1999) Geological Society of America Special Paper, 341, pp. 1-131Keller, M., Buggisch, W., Lehnert, O., (1998) The Stratigraphical Record of the Argentine Precordillera and Its Plate-tectonic Background, p. 142. , Pankhurst R.J. & Rapela C.W. (eds. The Proto-Andean Margin of Gondwana. London Geological Society of London Special PublicationKsia̧zkiewicz, M., Trace fossils in the flysch of the Polish carpathians (1970) Palaeontologica Polonica, 36, pp. 1-208Lamb, M.P., Myrow, P.M., Lukens, C., Houck, K., Strauss, J., Deposits from waveinfluenced turbidity currents: Pennsylvanian minturn formation, colorado, U.S.A. (2008) Journal of Sedimentary Research, 78, pp. 480-498Leckie, D.A., Krystinik, L.F., Is there evidence for geostrophic currents preserved in the sedimentary record of inner to middleshelf deposits? (1989) Journal of Sedimentary Petrology, 59, pp. 862-870Leckie, D.A., Walker, R.G., Storm-dominated and tidedominated shorelines in Cretaceous Moosebar Lower Gates Interval Outcrop equivalents of deep basin gas trap in western Canada Reply (1982) American Association of Petroleum Geologists Bulletin, 66, pp. 2683-2684Massuda, F., Yokokawa, M., Combined flow ripple profiles: A preliminary note (1993) Journal of Sedimentary Society of Japan, 38, pp. 107-111Miall, A.D., Architectural-element analysis: A new method of facies analysis applied to fluvial deposits (1985) Earth-Science Reviews, 22, pp. 261-308Molina, J.M., Alfaro, P., Moretti, M., Soria, J.M., (1998) Soft-sediment Deformation Structures Induced by Cyclic Stress of Storm Waves in Tempestites (Miocene, Guadalquivir Basin, Spain), 10, pp. 145-150. , Terra NovaMulder, T., Syvitski, J.P.M., Turbidity currents generated at river mouths during exceptional discharges to the world oceans (1995) Journal of Geology, 103, pp. 285-299Mutti, E., (1992) Turbidite Sandstone, p. 276. , Milano, Agip SpaMyrow, P.M., Bypass-zone Tempestite facies model and proximality trends for an ancient muddy shoreline and shelf (1992) Journal of Sedimentary Petrology, 62, pp. 99-115Myrow, P.M., Southard, J.B., Combined-flow model for vertical stratification sequences in shallow marine storm-deposited beds (1991) Journal of Sedimentary Petrology, 61, pp. 202-210Myrow, P.M., Southard, J.B., Tempestite deposition (1996) Journal of Sedimentary Research, 66, pp. 875-887Myrow, P.M., Woodward, F., Goodge, J.W., Wave-modified turbidites: Combined-flow shoreline and shelf deposits. Cambrian, Antartica (2002) Journal of Sedimentary Research, 72, pp. 641-656Myrow, P.M., Lukens, C., Lamb, M.P., Houck, K., Strauss, J., Dynamics of a transgressive prodeltaic system: Implications for geography and climate within a Pennsylvanian intracratonic basin, Colorado, U.S.A (2008) Journal of Sedimentary Research, 78, pp. 512-528Nelson, C.H., Modern shallow-water graded sand layers from storm surges, Bering shelf: A mimic of Bouma sequences and turbiditic systems (1982) Journal of Sedimentary Petrology, 52, pp. 536-545Nicholson, H.A., Contributions to the study of the errant Annelids of the older Paleozoic rocks (1873) Proceedings of the Royal Society of London, 21, pp. 288-290Nøttvedt, A., Kreisa, R.D., Model for combined-flow origin of hummocky crossstratification (1987) Geology, 15, pp. 357-361Olivero, E., Lopez, C.M., Malumián, N., Torres Carbonell, P.J., Eocene Graphoglyptids from shallow-marine, high energy, organicrich, and bioturbated turbidites, Fuegian Andes, Argentina (2010) Acta Geologica Polonica, 60, pp. 77-91Parker, G., Conditions for the ignition of catastrophically erosive turbidity currents (1982) Marine Geology, 46 (3-4), pp. 307-327Pattison, S.A.J., Storm-influenced prodelta turbidite complex in the lower Kenilworth member at Hatch Mesa, Book cliffs , Utah, U.S.A.: Implications for shallow marine facies models (2005) Journal of Sedimentary Research, 75 (3), pp. 420-439. , DOI 10.2110/jsr.2005.033Pattison, S.A.J., Bruce Ainsworth, R., Hoffman, T.A., Evidence of across-shelf transport of fine-grained sediments: Turbidite-filled shelf channels in the Campanian Aberdeen Member, Book Cliffs, Utah, USA (2007) Sedimentology, 54 (5), pp. 1033-1063. , DOI 10.1111/j.1365-3091.2007.00871.xPemberton, S.G., Maceachern, J.A., Ranger, M.J., (1992) Ichnology and Event Stratigraphy: The Use of Trace Fossils in Recognizing Tempestitos, pp. 85-117. , Pemberton S.G. (ed Applications of ichnology to petroleum exploration, a core workshop. SEPM Core Work-shopPoiré, D.G., Morel, E.M., Procesos sedimentarios vinculados a la depositación de niveles con plantas en secuencias Siluro-Devónicas de la Precordillera, Argentina (1996) Actas VI Reunión Argentina de Sedimentología, VI, pp. 205-210Ramos, V.A., Vujovich, G.I., Hoja Geológica 3169-IV: San Juan (2000) Provincia San Juan. Escala, 1, p. 250000. , Texto explicativo. Buenos Aires, Programa nacional de Cartas Geológicas de La Republica Argentina, Servicio Geológico Minero ArgentinoRapela, C.W., Pankhurst, R.J., Casquet, C., Baldo, E., Savedra, J., Galindo, C., Early evolution of the proto-Andean os South América (1998) Geology, 26, pp. 707-710Salter, J.W., On annelide-burrows and surface markings from the Cambrian rocks of the Longmynd (1857) Geological Society of London Quaterly Journal, 13, pp. 199-206Seilacher, A., (1963) Lebensspuren und Salinitats Fazies-Symposium Zur Unterschiedung Mariner und Nicht-mariner Sediment.Dusseldorf 1962, 10, pp. 81-94. , Fort schr. in der Geol. von Rheinl. und West-falenSeilacher, A., Bathymetry of trace fossils (1967) Marine Geology, 5, pp. 413-428Seilacher, A., Pattern analysis of Paleodictyon and related trace fossils (1977) Geological Journal, Special Issue, 9, pp. 289-334. , Crimes T.P. & Harper J.C. (eds), Trace Fossil 2Snedden, J.W., Swift, D.J.P., Is there evidence for geostrophic currents preserved in the sedimentary record of inner-to middleshelf deposits?-Discussion (1991) Journal of Sedimentary Petrology, 6, pp. 148-151Snedden, J.W., Nummedal, D., Amos, A.F., Storm-and fairweather combined flow on the central Texas continental shelf (1988) Journal of Sedimentary Petrology, 58, pp. 580-595Swift, D.J.P., Response of the shelf floor to flow (1985) Shelf Sands and Sandstone Reservoirs, , Tillman R.W., Swift D.J.P., Walker R.G. (edsTulsa Society of Economic Paleontologists and Mineralogists, pp. 135-241Swift, D.J.P., Gregory, H., Vincent, C.E., (1986) Fluid Processes and Seafloor Response on A Modern Storm-dominated Shelf: Middle Atlantic Shelf of North America. Part 1: The Storm Current Regime, pp. 99-119. , Knight R.J., & McLean J.R. (eds. Shelf Sands and Sandstones. Canadian Society of Petroleum GeologistsThomas, W.A., Astini, R.A., Ordovician accretion of the Argentine Precordillera terrane to Gondwana: A review (2003) Journal of South American Earth Sciences, 16 (1), pp. 67-79. , DOI 10.1016/S0895-9811(03)00019-1Torell, O., Petrificata Suecana Formationis Cambricae (1870) Acta Universitatis Lundensis, 2, pp. 1-14Uchman, A., Janbu, N.S., Nemec, W., Trace fossils in the cretaceous-eocene flysch of the sinop-boyabat basin, central Pontides, Turkey (2004) Annales Societatis Geologorum Poloniae, 74, pp. 97-235Von Sternberg, K.G., (1833) Versuch Einer Geognostisch-botanischen Darstellung der Flora der Vorwelt, (5-6), pp. 1-80. , IV Heft C. E. Brenck, RegensburgWalker, R.G., (1984) Shelf and Shallow Marine Sands, pp. 141-170. , Walker R.G. (ed. Facies Models. Geoscience Canada, Reprint SeriesWalker, R.G., (2006) Facies Models Revisited, 84, pp. 1-17. , Posamentier R. W. & Walker R.G. (eds. , Facies models revisited, SEPM Special PublicationWeiss, E., (1884) Vorlegung des Dictyophytum Liebeanum Gein. Aus der Gegend von Gera. Ber. Gen. Naturf, p. 17. , Berlin, FreundWheatcroft, R.A., Sommerfield, C.K., Drake, D.E., Borgeld, J.C., Nittrouer, C.A., Rapid and widespread dispersal of flood sediment on the northern California margin (1997) Geology, 25, pp. 163-166Yamaguchi, N., Sekiguchi, H., Effects of settling and preferential deposition of sediment on ripple roundness under shoaling waves (2010) Journal of Sedimentary Research, 80, pp. 781-790Yang, B.C., Dalrymple, R.W., Chun, S.S., The significance of hummocky cross-stratification (HCS) wavelengths: Evidence from an open-coast tidal flat, South Korea (2006) Journal of Sedimentary Research, 76 (1-2), pp. 2-8. , DOI 10.2110/jsr.2006.01Yokokawa, M., Masuda, F., Endo, N., Sand particle movement on migrating combined-flow ripples (1995) Journal of Sedimentary Research, 65, pp. 40-44Zenker, J.C., (1836) Historischtopographisches Taschenbuch von Jena und Seiner Umgebung Besonders in Naturwissenschaftlicher und Medizinischer Beziehung, p. 338. , Wackenhoder, Jen

    Controls of Radiogenic Heat and Moho Geometry on the Thermal Setting of the Marche Region (Central Italy): An Analytical 3D Geothermal Model

    Get PDF
    none7sìopenSantini, S.; Basilici, M.; Invernizzi, C.; Jablonska, D.; Mazzoli, S.; Megna, A.; Pierantoni, P.P.Santini, S.; Basilici, M.; Invernizzi, C.; Jablonska, D.; Mazzoli, S.; Megna, A.; Pierantoni, P. P

    Editorial

    Get PDF
    Dear LAJSBA readers, this editorial note has the intention to updateyou with the news from our journal. In this sense, we want to tell you that our editorial team has been renewedwith the incorporation of two Associate Editors, José I. Cuitiño(CONICET, Argentina) and Giorgio Basilici (UNICAMP, Brazil). We want to express deeply thanks to RenataNetto and Fernando Gómez for the excellent work doneduring the last four years.We also express our gratitude to the Board of the Asociación Argentina de Sedimentología for trusting us for this importantand committed task. The journal, since its foundation in 2005 (coming from the AAS Revista since 1994), has been progressively improving its quality and its visibility within the scientific community. LAJSBA is an entirelyonlinefree-access journal witha highlevel scientific quality and designwhich is recognized bythe Latin American Earth Sciences community. In terms of bibliographic indexes, LAJSBA is included in the ranks of SCOPUS, Scimago, Latindex, DOAJ, GeoRef,andSciELO. Some important news can be highlighted from the last two years.Firstly, we want to communicate a great improvement for our journal: the launch of the new LAJSBA website!This website (https://lajsba.sedimentologia.org.ar/index.php/lajsba) represents a great advance for the journal and concentrate not only thesubmission and review systems, but also the repository ofthe complete collection of LAJSBA.This achievement was possible thanks to the support of the members of the AsociaciónArgentina de Sedimentología and we are proud to share it with the entire Latin Americangeoscientist community and from every corner of the world where LAJSBA has a reader. The second essential notice is that, since the volume 26.2 (December 2019) the journal is on regular time! This was possible through the efforts of authors, reviewers and editors, which hardly worked during the last four years. One benefit of the present onlinepublication system is the possibility to manage several volumes in progress in our online platform;this meansthat after the paper acceptance, it will be automatically published as part of future volumes, reducing considerably the time for online publication. Finally, a great news for our sedimentological community is related tothe latestmodification from Scimago Journal Ranking, whichrankedthe journal in the 2nd Quartile in all the categories where it is included (Geology, Paleontology, and Stratigraphy). This was the result of the high visibility gain for LAJSBA which could be interpreted from the statistics in the Scimago web page, where our journal reached in 2021 the record of cites in the last 15 years! We are convinced that maintaining the path marked by previous editorial teams, together with the recent improvements of bibliographic indexes andan active international diffusion,LAJSBAwill increasingly become an attractive journalfor the communication of scientific advances of the Sedimentology and Basin Analysisscientific community.To conclude, we want to emphasize that the future of LAJSBA depends uponthe support of the Latin American sedimentological community, including readers, authors, reviewers, and editors, not just to maintain its importance in our region, but to cross our borders.We repeat once again the message to our readers; we are looking forward to receiving your contributions

    Thermal structure of the northern outer Albanides and adjacent Adriatic crustal sector, and implications for geothermal energy systems

    Get PDF
    none8sìopenSantini, S.; Basilici, M.; Invernizzi, C.; Mazzoli, S.; Megna, A.; Pierantoni, P.P.; Spina, V.; Teloni, S.Santini, S.; Basilici, M.; Invernizzi, C.; Mazzoli, S.; Megna, A.; Pierantoni, P. P.; Spina, V.; Teloni, S
    corecore