55 research outputs found
Magnetic traveling-stripe-forcing: enhanced transport in the advent of the Rosensweig instability
A new kind of contactless pumping mechanism is realized in a layer of
ferrofluid via a spatio-temporally modulated magnetic field. The resulting
pressure gradient leads to a liquid ramp, which is measured by means of X-rays.
The transport mechanism works best if a resonance of the surface waves with the
driving is achieved. The behavior can be understood semi-quantitatively by
considering the magnetically influenced dispersion relation of the fluid.Comment: 6 Pages, 8 Figure
The effect of magnetophoresis and Brownian diffusion on the levitation of bodies in a magnetic fluid
New aspects related to the redistribution of magnetic particles concentration in a magnetic fluid caused by magnetophoresis and Brownian diffusion in a nonuniform magnetic field are considered. These aspects deal with the influence of these processes on pressure redistribution and levitation of bodies in a magnetic fluid. It is shown that due to these processes the pressure force acting on bodies changes significantly with time and can be reduced dozens of percent if compared to a homogenous flui
The Shape of the Magnetic Fluid Surface above a Magnetizable Sphere in a Uniform Magnetic Field
The shape of the free surface of a magnetic fluid above a spherical ferromagnetic body immersed in it in a uniform magnetic field is investigated experimentally. The effect of the direction and magnitude of the magnetic field on the deformation characteristics of the free surface of the magnetic fluid with various magnetic properties and geometrical parameters is established
Features of the Behavior of a Plane Axisymmetric Magnetic Fluid Drop in a Nonmagnetic Solvent and a Uniform Magnetic Field
The work is devoted to an experimental study of the process of dissolution of a magnetic fluid in a nonmagnetic solvent under the action of a uniform magnetic field. It is experimentally established that in a volume of magnetic fluid surrounded by a miscible solvent fluid, under the action of a uniform magnetic field, a mechanical movement arises, triggering deformation of this volume. Initially, the axisymmetric volume of the fluid takes an ellipsoidal shape, lengthening along the magnetic field direction. The main reason for this movement is the pressure differences in the magnetic fluid, caused by jumps and nonuniformities of the magnetic field at the interface between magnetic and nonmagnetic media. Simultaneously with the mechanical motion, the diffusion dissolution of the magnetic fluid occurs, which is also accompanied by the motion of the diffusion front at the interface between the fluids. The concentration gradients of magnetic particles that arise in this case cause gradients of the magnetization of the fluid and, as a consequence, gradients of the magnetic field intensity. Together, this triggers the appearance of a bulk magnetic force in the magnetic fluid, and the pressure gradients associated with it. The main regularities of this process have been established, viz. the dependence of change of the geometric characteristics of the volume and its deformation rate on time. It is shown that at the initial stage of the process, the rates of mechanical movement of the boundaries of the magnetic fluid volume are much higher than the rates of movement of the diffusion front. Thus, the initial rate of mechanical elongation of the droplet under the experimental conditions is 0.25 mm/min, and the diffusion front rate is 0.08 mm/min. Over time, these processes slow down and stop when the volume of the magnetic fluid is completely dissolved. Herewith, the mechanical elongation of the drop is the first to stop and, in the case under consideration, takes about ten minutes
Особенности поведения плоской осесимметричной капли магнитной жидкости в немагнитном растворителе в однородном магнитном поле
The work is devoted to an experimental study of the process of dissolution of a magnetic fluid in a nonmagnetic solvent under the action of a uniform magnetic field. It is experimentally established that in a volume of magnetic fluid surrounded by a miscible solvent fluid, under the action of a uniform magnetic field, a mechanical movement arises, triggering deformation of this volume. Initially, the axisymmetric volume of the fluid takes an ellipsoidal shape, lengthening along the magnetic field direction. The main reason for this movement is the pressure differences in the magnetic fluid, caused by jumps and nonuniformities of the magnetic field at the interface between magnetic and nonmagnetic media. Simultaneously with the mechanical motion, the diffusion dissolution of the magnetic fluid occurs, which is also accompanied by the motion of the diffusion front at the interface between the fluids. The concentration gradients of magnetic particles that arise in this case cause gradients of the magnetization of the fluid and, as a consequence, gradients of the magnetic field intensity. Together, this triggers the appearance of a bulk magnetic force in the magnetic fluid, and the pressure gradients associated with it. The main regularities of this process have been established, viz. the dependence of change of the geometric characteristics of the volume and its deformation rate on time. It is shown that at the initial stage of the process, the rates of mechanical movement of the boundaries of the magnetic fluid volume are much higher than the rates of movement of the diffusion front. Thus, the initial rate of mechanical elongation of the droplet under the experimental conditions is 0.25 mm/min, and the diffusion front rate is 0.08 mm/min. Over time, these processes slow down and stop when the volume of the magnetic fluid is completely dissolved. Herewith, the mechanical elongation of the drop is the first to stop and, in the case under consideration, takes about ten minutes.Работа посвящена экспериментальному исследованию процесса растворения магнитной жидкости в немагнитном растворителе под действием однородного магнитного поля. Экспериментально установлено, что в объеме магнитной жидкости, окруженном смешивающейся с ней жидкостью-растворителем, под действием однородного магнитного поля возникает механическое движение, приводящее к деформации этого объема. Первоначально осесимметричный объем жидкости принимает эллипсоидальную форму и удлиняется вдоль направления магнитного поля. Основной причиной этого движения являются перепады давления в магнитной жидкости, вызванные скачками и неравномерностями магнитного поля на границе раздела магнитных и немагнитных сред. Одновременно с механическим движением происходит диффузионное растворение магнитной жидкости, которое также сопровождается движением диффузионного фронта на границе раздела жидкостей. Возникающие при этом градиенты концентрации магнитных частиц вызывают градиенты намагниченности жидкости и, как следствие, градиенты напряженности магнитного поля. В совокупности это приводит к возникновению объемной магнитной силы в магнитной жидкости и связанных с ней градиентах давления. Установлены основные закономерности этого процесса: зависимость изменения геометрических характеристик объема и скорости его деформации от времени. Показано, что на начальном этапе процесса скорость механического движения границ объема магнитной жидкости значительно превышает скорость движения диффузионного фронта. Так, начальная скорость механического удлинения капли в условиях эксперимента составляет 0,25 мм/мин, а скорость распространения диффузионного фронта 0,08 мм/мин. Со временем эти процессы замедляются и прекращаются, когда объем магнитной жидкости полностью растворяется. При этом механическое удлинение капли прекращается первым и в рассматриваемом случае занимает порядка десятка минут
Axisymmetric solitary waves on the surface of a ferrofluid
We report the first observation of axisymmetric solitary waves on the surface
of a cylindrical magnetic fluid layer surrounding a current-carrying metallic
tube. According to the ratio between the magnetic and capillary forces, both
elevation and depression solitary waves are observed with profiles in good
agreement with theoretical predictions based on the magnetic analogue of the
Korteweg-deVries equation. We also report the first measurements of the
velocity and the dispersion relation of axisymmetric linear waves propagating
on the cylindrical ferrofluid layer that are found in good agreement with
theoretical predictions.Comment: to be published in Phys. Rev. Let
On the mechanics of magnetic fluids with field-induced phase transition: Application to Couette flow
The influence of Brownian diffusion and magnetophoresis, which are followed by phase transition, on the characteristics of a stationary plane Couette flow of magnetic fluid in a non-uniform magnetic field is discussed. The phase transition conditions in magnetic fluids are assumed as a natural restriction to the particle concentration increase in a non-uniform magnetic field. Profiles of the particles' concentration are calculated, and dependences of the volume magnetic force and of the viscous force are established. © 2018 Institute of Physics, University of Latvia
К ТЕОРИИ МАГНИТОЖИДКОСТНОГО УПЛОТНЕНИЯ
A theoretical model of magnetic fluid seal is proposed and it permits to carry out calculation of its static characteristics while using analytical methods. Comparison of theoretical and experimental results shows an adequacy of the proposed model to the actual situation.Предложена теоретическая модель магнитожидкостного уплотнения, позволившая осуществить расчет его статических характеристик аналитическими методами. Сравнение с результатами выполненных экспериментов показало адекватность модели реальной ситуации
К ОЦЕНКЕ КАЧЕСТВА МАГНИТНЫХ ЖИДКОСТЕЙ ДЛЯ МАГНИТОЖИДКОСТНЫХ УСТРОЙСТВ
Magnetic fluid is a colloid of magnetic nanoparticles. Using of magnetic fluids in technical devices demands applying of strong non-uniform magnetic fields for a long time. One of the most widespread magnetic fluid devices are magnetic fluid seals of mobile shafts, magnetic fluid supports, bearings, acceleration and angle of inclination gauges, devices for information input in the computer and etc. These devices demand high quality of used fluids. Processes of magnetophoresis and Brownian diffusion in magnetic fluid lead to concentration of magnetic particles in the areas with higher intensity of magnetic field and increase of fluid magnetization in these areas. A local change of particles concentration in the fluid leads to variation of its physical properties. Formation of aggregates from the particles and the further stratification of magnetic fluid, up to its destruction, may be the most serious consequence of redistribution of concentration of magnetic particles. These factors lead to variation of parameters of magnetic fluid devices; cause disturbance of their normal operation and even failure. Therefore, the consistent, high quality magnetic fluids which are not subject to fast stratification in a non-uniform magnetic field are necessary for effective work of the devices. The procedure of evaluation test of quality of magnetic fluids is proposed in this paper. The test is based on studying of influence of processes of magnetophoresis and Brownian diffusion of magnetic particles in magnetic fluid on the forces acting on the volume of fluid in an external non-uniform magnetic field. The procedure is developed on the basis of analysis of magnetic force variation in time under the action of non-uniform field of permanent magnets. Methods of determination of stability of magnetic fluid, known at present, demand rather complicated equipment and laborious and complex investigations. Proposed procedure can be used as an express method for evaluation of magnetic fluid quality for usage in technical devices, and it does not need complicated equipment.Магнитная жидкость представляет собой коллоид наночастиц магнетита. Применение магнитных жидкостей в технических устройствах имеет особенность, связанную с необходимостью использования сильно неоднородных магнитных полей в течение длительного промежутка времени. Одними из наиболее распространенных магнитожидкостных устройств являются магнитожидкостные уплотнения подвижных валов, магнитожидкостные опоры, подшипники, датчики ускорения, угла наклона, устройства для ввода информации в ЭВМ и т. п. Данные устройства предъявляют высокие требования к качеству используемых жидкостей. При воздействии неоднородных магнитных полей в магнитной жидкости происходят процессы магнитофореза и броуновской диффузии, что приводит к концентрации магнитных частиц в областях магнитной жидкости с большей напряженностью магнитного поля и увеличению намагниченности жидкости в данных областях. Локальное изменение концентрации частиц в жидкости изменяет ее физические свойства. Наиболее серьезным следствием переконцентрации магнитных частиц может быть образование агрегатов из частиц и дальнейшее расслоение магнитной жидкости вплоть до ее разрушения. Эти факторы приводят к изменению параметров магнитожидкостных устройств, нарушению их работоспособности и даже выходу из строя. Поэтому для их эффективной работы необходимы устойчивые, качественные магнитные жидкости, не подверженные быстрому расслоению в неоднородном магнитном поле. В данной работе предлагается методика оценки качества магнитных жидкостей, основанная на изучении влияния процессов магнитофореза и диффузии броуновских магнитных частиц в магнитной жидкости на силы, действующие в объеме жидкости во внешнем неоднородном магнитном поле. Методика создана на основе анализа характеристик изменения магнитной силы во времени в неоднородном поле постоянных магнитов. Известные в настоящее время методы определения устойчивости магнитной жидкости требуют достаточно сложного аппаратурного оформления и трудоемкой процедуры выполнения комплекса исследований. Предлагаемая методика может быть использована в качестве экспресс-метода оценки качества магнитной жидкости для ее применения в технических устройствах, и она не требует сложной аппаратуры
Elongation of confined ferrofluid droplets under applied fields
Ferrofluids are strongly paramagnetic liquids. We study the behavior of
ferrofluid droplets confined between two parallel plates with a weak applied
field parallel to the plates. The droplets elongate under the applied field to
reduce their demagnetizing energy and reach an equilibrium shape where the
magnetic forces balance against the surface tension. This elongation varies
logarithmically with aspect ratio of droplet thickness to its original radius,
in contrast to the behavior of unconfined droplets. Experimental studies of a
ferrofluid/water/surfactant emulsion confirm this prediction.Comment: 12 pages, 7 figures. Submitted to Phys. Rev.
- …