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A contactless pumping mechanism is realized in a layer of ferrofluid via a spatiotemporally modulated
magnetic field. The resulting pressure gradient leads to a liquid ramp, which is measured by means of x-rays.
The transport mechanism works best if a resonance of the surface waves with the driving is achieved. The
behavior can be understood by considering the magnetically influenced dispersion relation of the fluid.
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I. INTRODUCTION

Ferrofluids are colloidal dispersions of magnetic nanopar-
ticles, which show superparamagnetic behavior �1�. This of-
fers the advantage to control and facilitate their flow by time-
dependent magnetic fields. For example in alternating fields
a viscosity reduction was predicted for Poiseuille flow �2�
and thereafter experimentally confirmed �3,4�. More spec-
tacularly, in rotating fields a spontaneous spin up of surface
flow was observed in a beaker �5� and quantitatively ana-
lyzed in a circular duct �6�.

An intriguing alternative to rotating fields is to apply a
spatiotemporally modulated field. Here, one has to discern
two transport mechanisms. One is “ferrohydrodynamic
pumping” which was lately studied for a closed channel ge-
ometry �7,8�. It relies on the phase shift between the external
field and the magnetization and works best for frequencies in
the range of the inverse Brownian relaxation time, i.e., in the
kilohertz regime. The second mechanism relies on traveling
surface waves, driven by a traveling magnetic field. This was
realized by an array of solenoids acting on a free surface of
ferrofluid �9� and discussed in connection with the effect of
peristaltic pumping �10�. As we will show in this paper the
driving caused by a free surface gains momentum if the trav-
eling field is superimposed by a constant field oriented nor-
mally to the fluid layer.

In such a vertically oriented magnetic field, a plain layer
of ferrofluid transforms into a hexagonal array of crests if a
critical threshold Hc is overcome—the so-called Rosensweig
instability �11�. Approaching Hc from below, a vanishing of
the phase velocity vp of surface waves was observed and
explained by the nonmonotonic dispersion relation �12�. In
this regime, a traveling-stripe forcing of the magnetic induc-
tion was predicted to excite a resonance of the wave ampli-
tudes if the driving velocity coincides with vp �13�. This was
recently verified by experiments �14�. As we show in the
following, this resonance is correlated with a maximal net
force—as indicated by a liquid ramp—on the magnetic fluid.

II. EXPERIMENTAL SETUP AND PROCEDURE

Our setup is sketched in Fig. 1. A Helmholtz pair of coils
provides an applied field H0 along the vertical direction by
means of a stabilized electrical current. In the center of the
coils a container machined from Perspex™ is located. It con-
tains a box-shaped cavity with a length of 120 mm, a width

of 100 mm, and a height of 25 mm. This cavity is filled with
30 ml of ferrofluid EMG909 �Table I�. About 5 mm below the
bottom of the cavity, a motor-driven conveyor belt is located.
It harbors a grid of rods made from welding wire ��
=2 mm� with a spacing of �G= �9.3�1� mm.

Radiation emitted by an x-ray tube mounted 1.5 m above
the container is permeating the ferrofluidic layer and is re-
corded by an x-ray detector �16 bits�. The absorption pictures
serve to reconstruct the surface topography of the liquid
layer. The measurement of the height is calibrated by means
of a ferrofluidic ramp �15,16�. To eliminate the shadows cast
by the rods we measure the time-averaged absorption of x
rays with the moving belt included.

The belt leads to a spatial modulation of the magnetic
field. The modulation of this field was measured within the
empty cavity at one fixed position 2 mm above the ground of
the container with the belt in motion. A result for a belt
velocity vG of 0.75 cm/s and an applied field of �0H0
=22.29 mT, which has been measured by the Hall probe in
the absence of the grid, is depicted in Fig. 2. The fit to a
harmonic function demonstrates that the magnetic field can
be modeled as a harmonic wave,

HG = HG,0 + �HG sin��t − kGx� . �1�

Here, HG,0 denotes the mean value and �HG,0 denotes the
amplitude of the modulated field. The frequency �
=2�vG /�G �14� is controlled by the motor �Mattke MDR-
230�. The wave number kG=2� /�G is set by the grid spacing
and has been chosen to be close to the critical wave number
of the Rosensweig instability. The fact that HG,0 �gray dashed
line� is slightly above the value of the applied field H0 �gray

FIG. 1. �Color� Sketch of the experimental setup.
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line� is explained by a focusing of the magnetic field toward
the grid. About 30% of the area within the Helmholtz pair of
coils is covered by the moving grid. This causes an increase
in the average magnetic field strength HG,0 within the grid
area since the field lines are attracted by the iron rods.

Figure 3 shows the modulation amplitude �HG as a func-
tion of the applied magnetic field H0. The fitted gray line
indicates a linear dependence, thus demonstrating that the
soft ferromagnetic material chosen for the rods is well suited
for the experiments.

The modulation �HG decreases with increasing distance
from the rods. This is demonstrated experimentally in Fig. 4.
The gray line is the fit to

�HG�z� = �HG�0�e−z/�G, �2�

because we expect an exponential decay with the decay
length given by the grid spacing �G when assuming a two-
dimensional field. The fit yields �0�HG�0�=0.62 mT for the
modulation at the bottom of the cavity.

The ferrofluid EMG909 is made of magnetite particles dis-
persed in kerosene. Its nonlinear magnetization curve is plot-
ted in Fig. 5. We measured M�H� using a fluxmetric magne-
tometer consisting of a Helmholtz pair of sensing coils with
6800 windings and a commercial integrator �Lakeshore
Fluxmeter 480�. The sample is held in a spherical cavity with
a diameter of 12.4 mm in order to provide a homogeneous
magnetic field inside the sample with a demagnetization fac-
tor of 1

3 . The gray line is a fit using the Langevin function �1�

M = Ms�coth��H� −
1

�H
� . �3�

This function was derived for dilute monodisperse colloidal
suspensions and shows visible deviations from the data. In
contrast, the black line displays a fit of a model for dense
polydisperse magnetic fluids, namely, Eq. �32� of Ref. �17�.
This model assumes a � distribution for the particle diameter
d,

g�d� =
1

��	 + 1�d
� d

d0
�	

exp�−
d

d0
� , �4�

where d0=1.4 nm and 	=3.8 are the obtained fit parameters,

corresponding to a mean particle diameter d̄=6.6 nm. The fit
also provides the volume fraction of magnetite to be 4.0%.

Furthermore we characterize our ferrofluid by subjecting
it to a homogeneous magnetic field, i.e., we omit for this
measurement the driving belt. The plain layer becomes un-
stable at a critical field of �0Hc,meas=21 mT. Like in Refs.
�16,18� this value was obtained by fitting the measured spike
amplitudes with a scaling law provided by theory �19�.

Figure 6�a� shows the surface topography of the magnetic
liquid as reconstructed from the x-ray absorption, for a driv-
ing velocity of vG=4.1 cm /s to the left-hand side. We aver-
aged over 1300 subsequent images with an exposure time of
0.4 s each. Obviously the liquid builds up a ramp in the
container. A longitudinal cut of the ramp is presented in Fig.
6�b� by black solid circles. Each data point stems from an
average along the y dimension selecting the innermost 36.4

TABLE I. Parameters measured for the ferrofluid EMG909 Lot
H030308A from Ferrotec Co.

Density 
 0.9945 g /cm3

Surface tension � 23.37 mN/m

Initial susceptibility �0 0.95

Viscosity  3.3 mPa s

Critical wavelength �c=2�� �


g0
9.89 mm

Calculated critical field �0Hc,calc 21.35 mT

Measured critical field �0Hc,meas 21 mT
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FIG. 2. The solid circles indicate the magnetic field as a func-
tion of time. The horizontal gray line corresponds to the applied
field of the Helmholtz coils �0H0 as explained in the text. The black
line represents a fitted harmonic function. The horizontal dashed
gray line indicates the mean value �0HG,0 of that fit.
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FIG. 3. Modulation amplitude vs the induction impressed by the
coils. The experimental data �black solid circles� are recorded for a
distance of z=2 mm between the Hall probe and the ground of the
container. Gray line: linear fit.
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FIG. 4. �HG measured for different distances z at �0H0

=22.29 mT �black solid circles�; gray line: exponential fit.
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mm of the vessel. The gray symbols give the longitudinal cut
for a driving to the right-hand side. The liquid ramp can be
approximated by

h�x� = tan���x + h0, �5�

as indicated by the fitted lines. The difference of the inclina-
tions is measured by the angle 2�. This value is representa-
tive for the pressure gradient created by the magnetic pump.

III. ESTIMATE OF THE PRESSURE GRADIENT

The buildup of the liquid ramp is caused by the Kelvin
force since we apply an inhomogeneous magnetic field to
magnetized matter. The system can be described by the fer-
rohydrodynamic Bernoulli equation �1�



�v�
�t

+ v� · �� v� = − �� p + �0M�� H + �� 2v� + 
g� . �6�

For the modeling, we assume our system to contain no flow;
thus, all the terms with v vanish. Further, we use a one-
dimensional ansatz and get

�p

�x
= �0Meff

�HG

�x
. �7�

Here, the gravity term vanishes, because g� is perpendicular
to x�. The strength HG of the external magnetic field in har-
monic approximation is given by Eq. �1�. The effective mag-
netization is defined as

Meff�x� = M
h�x�
h0

, �8�

where h0 denotes the average height of the ferrofluid layer,
and M is assumed to be constant. Assuming a harmonic wave
for the height modulation

h�x� = h0 + �h sin��t − kGx + �� , �9�

where � denotes the phase difference with respect to the
magnetic field, one gets

Meff�x� = Meff,ip sin��t − kGx� − Meff,op cos��t − kGx�

+ Meff,0. �10�

Here, Meff,ip denotes the part of the magnetization which is in
phase with the external field according to Eq. �1�. In contrast,
Meff,op is out of phase with HG, but in phase with the gradient
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FIG. 5. Nonlinear magnetization curve M�H�. Black solid
circles: measured data; black line: fit using the Ivanov model �17�;
gray line: fitted Langevin function.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

40 60 80 100 120 140

fl
ui

dl
ev

el
h

(m
m

)

x (mm)

2γ

(a)

(b)

FIG. 6. �Color� A liquid ramp: �a� three-dimensional reconstruc-
tion. The height difference between three subsequent black lines is
1.0 mm. �b� Averaged height profiles for forcing to the left-hand
side �black� and to the right-hand side �gray�. The solid lines rep-
resent fits by Eq. �5� within the range between x=60 mm and x
=120 mm.
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FIG. 7. �Color� Selection of surface inclinations versus the driv-
ing frequency for different �0H0 �denoted by the right ordinate in
mT�; the curves are shifted equidistantly upward to avoid intersec-
tions. The data points are connected by splines to guide the eye.
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�HG�x,t�
�x

= − k�HG cos��t − kGx� �11�

of the external field. Inserting Meff from Eq. �10� into Eq. �7�
and averaging over one period of the external field leads to a
mean pressure gradient,

� �p

�x
	

x

=



0

�

�0Meff
�HG

�x
dx

�
, �12�

along the x direction. Due to the free surface of the fluid in
the experiment, we can read off the corresponding pressure
gradient of the one-dimensional model directly. It can be
determined by the measured inclination angle � of the sur-
face as 
g tan �.

IV. EXPERIMENTAL RESULTS

In order to characterize the pressure difference created by
the pump, we investigate its dependence on the externally
applied field H0 and the belt velocity vG. Figure 7 presents
the results for ten different values of H0. For each field
strength, vG was raised from 0 to 11.2 cm/s in 30 steps.

Although the width and the shape of the ��v� curves
change with the applied field, in each case the pressure dif-
ference exhibits a maximum at a certain driving velocity
vm�H0�, e.g., for �0H0=18.95 mT � reaches a maximum at
7.29 cm/s. With increasing H0 this maximum is shifted to
lower velocities. In order to determine the position of the
maxima �vm�, we calculate the barycenter of those data being
larger than 75% of the maximal value of �.

In Fig. 8�a� the outcome is marked by black solid circles.
The gray curve denotes a model presented in the next sec-

tion. The maximal surface inclination is extracted by fitting
parabolas to the upper part of the curves. The result is plotted
in Fig. 8�b�. It demonstrates a monotonic increase in the
efficiency of the pump with the applied magnetic field,
which seems to saturate at about 30 mT.

V. MODELING THE RESONANCE

The resonance of � for a specific vm, as depicted in Fig. 7,
resembles the resonance of the amplitudes of surface waves
below the onset of the Rosensweig instability �13,14�. The
resonant phase velocity vp�H0� can be captured by the dis-
persion relation for an inviscid magnetic layer of infinite
depth �14�.

According to Eq. �12�, we expect a monotonic relation
between the wave amplitudes and the inclination �. The
function vm�H0� in Fig. 8�a� can be modeled in a certain
regime by utilizing the dispersion relation for small surface
wave amplitudes,

�2�k� = gek +
�



k3 −

�0




r

r + 1
k2M2. �13�

It can be deduced from Eq. �36� in Ref. �20�, as detailed in
Ref. �21�. The effective permeability r is the geometric mean
r=��1+�ta��1+�ch�, where �ta= ��M /�H� denotes the tan-
gential susceptibility and �ch= �M /H� denotes the chord sus-
ceptibility �1�. For the resonant phase velocity at k=kG one
yields

vp =
�

kG
=� ge

kG
+

�



kG −

�0




r

r + 1
M2. �14�

Using the jump condition for the field at the bottom of the
container Hext=Hi+M�Hi� and assuming that Hext is approxi-
mately given by H0, one can obtain vp�H0� numerically. The
outcome is marked in Fig. 8�a� by the solid line. It has been
calculated using the magnetization curve as presented in Fig.
5. It shows a good agreement with the measured data only
for small values of the field, because it is based on the
assumption of small amplitudes of the surface waves. The
intersection of this line with the x axis at �0Hc,calc
=21.35 mT denotes the estimate for the onset of the Rosens-
weig instability, where surface deformations spontaneously
form without any external modulation. This critical value has
been independently measured �see Sec. II and Table I� and
matches within the experimental uncertainty.

The maximum of the pressure gradient has experimentally
been observed for driving at vm as shown in Fig. 8�b�. The
phase shift � between HG and Meff is assumed to be �

2 for
this resonant driving, in analogy to a driven harmonic oscil-
lator. Using Eq. �12� and the small-angle approximation
tan �=� this assumption leads to

� =
�0M�HGk�h

2
gh0
. �15�

We measured �h with a laser reflection method, as de-
scribed in Ref. �14�. When using this method, we assume a
sinusoidal modulation of the surface; it is thus restricted to

FIG. 8. �a� Resonant phase velocity versus applied magnetic
field. The black solid circles give the experimental results. The gray
line stems from Eq. �14�; �b� angles of maximal surface inclinations
over the applied magnetic field. Black symbols are experimental
data points. The black line just connects the points via a spline fit to
guide the eyes. The gray circles are calculated according to Eq.
�15�.
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small values of the magnetic field H0. Therefore, we are
restricted to values well below Hc,nonlin. The corresponding
data points for four measured values of �h are indicated in
Fig. 8�b� by circles. The data only agree within about 50%.
This is partly due to �i� the flutter in �G, �ii� the geometrical
uncertainty connected with the laser reflection method, �iii�
the variation in h0 along the ramp, �iv� the variation of the
magnetization and the field modulation within the layer
thickness, and �v� the neglect of the higher harmonics of
h�x , t�. All these uncertainties are taken into account by the
error bars. Moreover, the model does not take into account
any backflow effects and assumes a strictly two-dimensional
geometry.

VI. CONCLUSION

In this paper we have demonstrated a pump for magnetic
fluids which is based on a resonance phenomenon in the
advent of the Rosensweig instability. Our driving relies fun-
damentally on the excitation of surface waves. It is thus re-
stricted to open channel geometries and differs substantially
from ‘‘ferrohydrodynamic pumping’’ as described in Ref. �8�
which works in closed channels. That method, however, is
most effective for frequencies comparable to the inverse
Brownian relaxation time ��10 kHz�, while our driving
mechanism favors low frequencies ��10 Hz�.

We have characterized the pump under no-load conditions
by measuring the static pressure gradient via a radioscopic
method. Under variation of the driving velocity, the pressure
gradient shows a resonance. The resonant phase velocity de-
creases with the applied magnetic field. This can be under-
stood by calculating the phase velocity of surface waves
from the dispersion relation, taking into account the nonlin-
ear magnetization curve. The pressure gradient is observed to
increase with the field, which is captured by a two-

dimensional model derived from the ferrohydrodynamic Ber-
noulli equation assuming a static equilibrium. This ansatz
leads to a transport effect, whose strength grows linearly
with the surface modulation; the peristaltic pumping on the
other hand grows with its square. A refined model should
include both effects and would be a task for numerical inves-
tigations.

In future work, the spatiotemporal driving of the liquid
could be achieved in different ways. While in the present
study we used a moving belt, harboring iron rods, to drive
the liquid, alternatively the driving may be realized by a
network of current carrying wires without any moving parts.
This would allow us to control the modulation amplitude and
the bias of the magnetic field independently.

The pump has been tested under no-load conditions. The
opposite approach would be to characterize the pump under
maximum-load conditions. Therefore, the input and output of
the pump must be connected by an open duct with minimal
flow resistance, similar to the setup described in Ref. �9�.
Note that our resonant driving may be exploited as well to
drive nonmagnetic liquids via the magnetically driven peri-
staltic motion investigated in Ref. �22�.

So far we have focused our measurements on the resonant
behavior below the formation of surface undulations. It re-
mains to be investigated how the spatiotemporal driving in-
teracts with the secondary instabilities leading to more com-
plicated surface patterns �23�.

ACKNOWLEDGMENTS

The authors are grateful to A. Beetz and C. Groh for their
contributions to the experimental design and K. Oetter for
the mechanical realization. Further we want to thank K. Zim-
mermann and A. Naletova for discussion and DFG SFB 481
for financial support.

�1� R. E. Rosensweig, Ferrohydrodynamics �Cambridge Univer-
sity Press, Cambridge, England, 1985�.

�2� M. I. Shliomis and K. I. Morozov, Phys. Fluids 6, 2855
�1994�.

�3� J.-C. Bacri, R. Perzynski, M. I. Shliomis, and G. I. Burde,
Phys. Rev. Lett. 75, 2128 �1995�.

�4� A. Zeuner, R. Richter, and I. Rehberg, Phys. Rev. E 58, 6287
�1998�.

�5� R. Moskowitz and R. Rosensweig, Appl. Phys. Lett. 11, 301
�1967�.

�6� R. Krauß, M. Liu, B. Reimann, R. Richter, and I. Rehberg,
Appl. Phys. Lett. 86, 024102 �2005�.

�7� L. D. Mao and H. Koser, J. Magn. Magn. Mater. 289, 199
�2005�.

�8� L. D. Mao and H. Koser, Nanotechnology 17, S34 �2006�.
�9� H. Kikura, T. Sawada, T. Tanahashi, and L. Seo, J. Magn.

Magn. Mater. 85, 167 �1990�.
�10� K. Zimmermann, I. Zeidis, V. A. Naletova, and V. A. Turkov,

J. Magn. Magn. Mater. 268, 227 �2004�.
�11� M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671

�1967�.

�12� B. Reimann, R. Richter, I. Rehberg, and A. Lange, Phys. Rev.
E 68, 036220 �2003�.

�13� V. G. Bashtovoi and M. S. Krakov, Magnetohydrodynamics
13, 17 �1977�.

�14� A. Beetz, C. Gollwitzer, R. Richter, and I. Rehberg, J. Phys.:
Condens. Matter 20, 204109 �2008�.

�15� R. Richter and J. Bläsing, Rev. Sci. Instrum. 72, 1729 �2001�.
�16� C. Gollwitzer, G. Matthies, R. Richter, I. Rehberg, and L. To-

biska, J. Fluid Mech. 571, 455 �2007�.
�17� A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E 64, 041405

�2001�.
�18� R. Richter and I. V. Barashenkov, Phys. Rev. Lett. 94, 184503

�2005�.
�19� R. Friedrichs and A. Engel, Phys. Rev. E 64, 021406 �2001�.
�20� R. E. Zelazo and J. R. Melcher, J. Fluid Mech. 39, 1 �1969�.
�21� B. Reimann, R. Richter, H. Knieling, R. Friedrichs, and I.

Rehberg, Phys. Rev. E 71, 055202�R� �2005�.
�22� G. Park and S. Park, IEEE Trans. Magn. 35, 4058 �1999�.
�23� S. Rüdiger, E. M. Nicola, J. Casademunt, and L. Kramer, Phys.

Rep. 447, 73 �2007�.

MAGNETIC TRAVELING-STRIPE FORCING: ENHANCED … PHYSICAL REVIEW E 82, 036304 �2010�

036304-5

http://dx.doi.org/10.1063/1.868108
http://dx.doi.org/10.1063/1.868108
http://dx.doi.org/10.1103/PhysRevLett.75.2128
http://dx.doi.org/10.1103/PhysRevE.58.6287
http://dx.doi.org/10.1103/PhysRevE.58.6287
http://dx.doi.org/10.1063/1.1754952
http://dx.doi.org/10.1063/1.1754952
http://dx.doi.org/10.1063/1.1846956
http://dx.doi.org/10.1016/j.jmmm.2004.11.058
http://dx.doi.org/10.1016/j.jmmm.2004.11.058
http://dx.doi.org/10.1088/0957-4484/17/4/007
http://dx.doi.org/10.1016/0304-8853(90)90045-R
http://dx.doi.org/10.1016/0304-8853(90)90045-R
http://dx.doi.org/10.1016/S0304-8853(03)00503-1
http://dx.doi.org/10.1017/S0022112067001697
http://dx.doi.org/10.1017/S0022112067001697
http://dx.doi.org/10.1103/PhysRevE.68.036220
http://dx.doi.org/10.1103/PhysRevE.68.036220
http://dx.doi.org/10.1088/0953-8984/20/20/204109
http://dx.doi.org/10.1088/0953-8984/20/20/204109
http://dx.doi.org/10.1063/1.1344178
http://dx.doi.org/10.1017/S0022112006003466
http://dx.doi.org/10.1103/PhysRevE.64.041405
http://dx.doi.org/10.1103/PhysRevE.64.041405
http://dx.doi.org/10.1103/PhysRevLett.94.184503
http://dx.doi.org/10.1103/PhysRevLett.94.184503
http://dx.doi.org/10.1103/PhysRevE.64.021406
http://dx.doi.org/10.1017/S0022112069002011
http://dx.doi.org/10.1103/PhysRevE.71.055202
http://dx.doi.org/10.1109/20.800754
http://dx.doi.org/10.1016/j.physrep.2007.02.017
http://dx.doi.org/10.1016/j.physrep.2007.02.017

