90 research outputs found

    Anomalous coercivity enhancement with temperature and tunable exchange bias in Gd and Ti co-doped BiFeO3_3 multiferroics

    Full text link
    We have investigated the effect of temperature on magnetic properties of Bi0.9_{0.9}Gd0.1_{0.1}Fe1x_{1-x}Tix_xO3_3 (x = 0.00-0.20) multiferroic system. Unexpectedly, the coercive fields (HcH_{c}) of this multiferroic system increased with increasing temperature. The coercive fields and remanent magnetization were higher over a wide range of temperatures in sample x = 0.10 i.e. in sample having composition Bi0.9_{0.9}Gd0.1_{0.1}Fe0.9_{0.9}Ti0.1_{0.1}O3_3 than those of x = 0.00 and 0.20 compositions. Therefore, we have carried out temperature dependent magnetization experiments extensively for sample x = 0.10. The magnetic hysteresis loops at different temperatures exhibit an asymmetric shift towards the magnetic field axes which indicate the presence of exchange bias effect in this material system. The hysteresis loops were also carried out at temperatures 150 K and 250 K by cooling down the sample from 300 K in various cooling magnetic fields (HcoolH_{cool}). The exchange bias field (HEBH_{EB}) values increased with HcoolH_{cool} and decreased with temperature. The HEBH_{EB} values were tunable by field cooling at temperatures up to 250 K.Comment: 7 page

    Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    Full text link
    A simple route to prepare Gd0.7_{0.7}Sr0.3_{0.3}MnO3_3 nanoparticles by ultrasonication of their bulk powder materials is presented in this article. For comparison, Gd0.7_{0.7}Sr0.3_{0.3}MnO3_3 nanoparticles are also prepared by ball milling. The prepared samples are characterized by X-ray diffraction (XRD),field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscope (XPS), and Superconducting Quantum Interference Device (SQUID) magnetometer. XRD Rietveld analysis is carried out extensively for the determination of crystallographic parameters and the amount of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50-100 nm for both ultrasonication and 4 hours (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit a paramagnetic to spin-glass transition. However, nanoparticles synthesized by 8 h and 12 h ball milling do not reveal any phase transition, rather show an upturn of magnetization at low temperature. The degradation of the magnetic properties in ball milled nanoparticles may be associated with amorphization of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique.Comment: 9 pages, 6 figure

    Dy doped BiFeO3_3 : A Bulk Ceramic with Improved Multiferroic Properties Compared to Nano Counterparts

    Full text link
    The synthesis as well as structural, multiferroic and optical characterization of Dy doped BiFeO3_3 multiferroic ceramic are presented. Bulk polycrystalline Bi0.9_{0.9}Dy0.1_{0.1}FeO3_3 sample is synthesized by solid state reaction, while their nano counterparts are prepared using ultrasonic probe sonication technique. Significant improvement of phase purity in the as synthesized samples is observed after the doping of Dy both in bulk Bi0.9_{0.9}Dy0.1_{0.1}FeO3_3 sample and corresponding nanoparticles as evidenced from Rietveld refinement. Magnetization measurements using SQUID magnetometer exhibit enhanced magnetic properties for Dy doped bulk Bi0.9_{0.9}Dy0.1_{0.1}FeO3_3 ceramic compared to their nanostructured counterparts as well as undoped BiFeO3_3. Within the applied field range, saturation polarization is observed for Bi0.9_{0.9}Dy0.1_{0.1}FeO3_3 bulk ceramic only. As a result, intrinsic ferroelectric behavior is obtained just for this sample. Optical bandgap measurements reveal lower bandgap for Dy doped bulk Bi0.9_{0.9}Dy0.1_{0.1}FeO3_3 ceramic compared to that of corresponding nanoparticles and undoped BiFeO3_3. The outcome of this investigation demonstrates the potential of Dy as a doping element in BiFeO3_3 that provides a bulk ceramic material with improved multiferroic and optical properties compared to those of corresponding nanoparticles which involve rigorous synthesis procedure.Comment: 8 Pages, 8 figure

    Size dependent magnetic and electrical properties of Ba-doped nanocrystalline BiFeO3_3

    Full text link
    Improvement in magnetic and electrical properties of multiferroic BiFeO3_3 in conjunction with their dependence on particle size is crucial due to its potential applications in multifunctional miniaturized devices. In this investigation, we report a study on particle size dependent structural, magnetic and electrical properties of sol-gel derived Bi0.9_{0.9}Ba0.1_{0.1}FeO3_3 nanoparticles of different sizes ranging from \sim 12 to 49 nm. The substitution of Bi by Ba significantly suppresses oxygen vacancies, reduces leakage current density and Fe2+^{2+} state. An improvement in both magnetic and electrical properties is observed for 10 % Ba-doped BiFeO3_3 nanoparticles compared to its undoped counterpart. The saturation magnetization of Bi0.9_{0.9}Ba0.1_{0.1}FeO3_3 nanoparticles increase with reducing particle size in contrast with a decreasing trend of ferroelectric polarization. Moreover, a first order metamagnetic transition is noticed for \sim 49 nm Bi0.9_{0.9}Ba0.1_{0.1}FeO3_3 nanoparticles which disappeared with decreasing particle size. The observed strong size dependent multiferroic properties are attributed to the complex interaction between vacancy induced crystallographic defects, multiple valence states of Fe, uncompensated surface spins, crystallographic distortion and suppression of spiral spin cycloid of BiFeO3_3.Comment:

    Simple top-down preparation of magnetic Bi0.9_{0.9}Gd0.1_{0.1}Fe1x_{1-x}Tix_xO3_3 nanoparticles by ultrasonication of multiferroic bulk material

    Full text link
    We present a simple technique to synthesize ultrafine nanoparticles directly from bulk multiferroic perovskite powder. The starting materials, which were ceramic pellets of the nominal compositions of Bi0.9_{0.9}Gd0.1_{0.1}Fe1x_{1-x}Tix_xO3_3 (x = 0.00-0.20), were prepared initially by a solid state reaction technique, then ground into micrometer-sized powders and mixed with isopropanol or water in an ultrasonic bath. The particle size was studied as a function of sonication time with transmission electron microscopic imaging and electron diffraction that confirmed the formation of a large fraction of single-crystalline nanoparticles with a mean size of 11-13 nm. A significant improvement in the magnetic behavior of Bi0.9_{0.9}Gd0.1_{0.1}Fe1x_{1-x}Tix_xO3_3 nanoparticles compared to their bulk counterparts was observed at room temperature. This sonication technique may be considered as a simple and promising route to prepare ultrafine nanoparticles for functional applications.Comment: 7 pages, 5 figure

    Global age-sex-specific all-cause mortality and life expectancy estimates for 204 countries and territories and 660 subnational locations, 1950–2023: a demographic analysis for the Global Burden of Disease Study 2023

    Get PDF
    Background: Comprehensive, comparable, and timely estimates of demographic metrics—including life expectancy and age-specific mortality—are essential for evaluating, understanding, and addressing trends in population health. The COVID-19 pandemic highlighted the importance of timely and all-cause mortality estimates for being able to respond to changing trends in health outcomes, showing a strong need for demographic analysis tools that can produce all-cause mortality estimates more rapidly with more readily available all-age vital registration (VR) data. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) is an ongoing research effort that quantifies human health by estimating a range of epidemiological quantities of interest across time, age, sex, location, cause, and risk. This study—part of the latest GBD release, GBD 2023—aims to provide new and updated estimates of all-cause mortality and life expectancy for 1950 to 2023 using a novel statistical model that accounts for complex correlation structures in demographic data across age and time. Methods: We used 24 025 data sources from VR, sample registration, surveys, censuses, and other sources to estimate all-cause mortality for males, females, and all sexes combined across 25 age groups in 204 countries and territories as well as 660 subnational units in 20 countries and territories, for the years 1950–2023. For the first time, we used complete birth history data for ages 5–14 years, age-specific sibling history data for ages 15–49 years, and age-specific mortality data from Health and Demographic Surveillance Systems. We developed a single statistical model that incorporates both parametric and non-parametric methods, referred to as OneMod, to produce estimates of all-cause mortality for each age-sex-location group. OneMod includes two main steps: a detailed regression analysis with a generalised linear modelling tool that accounts for age-specific covariate effects such as the Socio-demographic Index (SDI) and a population attributable fraction (PAF) for all risk factors combined; and a non-parametric analysis of residuals using a multivariate kernel regression model that smooths across age and time to adaptably follow trends in the data without overfitting. We calibrated asymptotic uncertainty estimates using Pearson residuals to produce 95% uncertainty intervals (UIs) and corresponding 1000 draws. Life expectancy was calculated from age-specific mortality rates with standard demographic methods. For each measure, 95% UIs were calculated with the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: In 2023, 60·1 million (95% UI 59·0–61·1) deaths occurred globally, of which 4·67 million (4·59–4·75) were in children younger than 5 years. Due to considerable population growth and ageing since 1950, the number of annual deaths globally increased by 35·2% (32·2–38·4) over the 1950–2023 study period, during which the global age-standardised all-cause mortality rate declined by 66·6% (65·8–67·3). Trends in age-specific mortality rates between 2011 and 2023 varied by age group and location, with the largest decline in under-5 mortality occurring in east Asia (67·7% decrease); the largest increases in mortality for those aged 5–14 years, 25–29 years, and 30–39 years occurring in high-income North America (11·5%, 31·7%, and 49·9%, respectively); and the largest increases in mortality for those aged 15–19 years and 20–24 years occurring in Eastern Europe (53·9% and 40·1%, respectively). We also identified higher than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 5–14 years (87·3% higher in GBD 2023 than GBD 2021 on average across countries and territories over the 1950–2021 period) and for females aged 15–29 years (61·2% higher), as well as lower than previously estimated mortality rates in sub-Saharan Africa for all sexes combined aged 50 years and older (13·2% lower), reflecting advances in our modelling approach. Global life expectancy followed three distinct trends over the study period. First, between 1950 and 2019, there were considerable improvements, from 51·2 (50·6–51·7) years for females and 47·9 (47·4–48·4) years for males in 1950 to 76·3 (76·2–76·4) years for females and 71·4 (71·3–71·5) years for males in 2019. Second, this period was followed by a decrease in life expectancy during the COVID-19 pandemic, to 74·7 (74·6–74·8) years for females and 69·3 (69·2–69·4) years for males in 2021. Finally, the world experienced a period of post-pandemic recovery in 2022 and 2023, wherein life expectancy generally returned to pre-pandemic (2019) levels in 2023 (76·3 [76·0–76·6] years for females and 71·5 [71·2–71·8] years for males). 194 (95·1%) of 204 countries and territories experienced at least partial post-pandemic recovery in age-standardised mortality rates by 2023, with 61·8% (126 of 204) recovering to or falling below pre-pandemic levels. There were several mortality trajectories during and following the pandemic across countries and territories. Long-term mortality trends also varied considerably between age groups and locations, demonstrating the diverse landscape of health outcomes globally. Interpretation: This analysis identified several key differences in mortality trends from previous estimates, including higher rates of adolescent mortality, higher rates of young adult mortality in females, and lower rates of mortality in older age groups in much of sub-Saharan Africa. The findings also highlight stark differences across countries and territories in the timing and scale of changes in all-cause mortality trends during and following the COVID-19 pandemic (2020–23). Our estimates of evolving trends in mortality and life expectancy across locations, ages, sexes, and SDI levels in recent years as well as over the entire 1950–2023 study period provide crucial information for governments, policy makers, and the public to ensure that health-care systems, economies, and societies are prepared to address the world's health needs, particularly in populations with higher rates of mortality than previously known. The estimates from this study provide a robust framework for GBD and a valuable foundation for policy development, implementation, and evaluation around the world
    corecore