89 research outputs found

    Game Theory Application in Smart Energy Logistics and Economy

    Get PDF
    In many parts of the world, energy sectors are transformed from conventional to the smart deregulated market structures. In such smart deregulated market environment, cooperative game theory can play a vital role for analyzing various smart deregulated market problems. As an optimization tool, cooperative game theory is very useful in smart energy logistics and economy analysis problem. The economy associated with smart deregulated structure can be better optimized and allocated with the help of cooperative game theory. Initially, due to regulated structure, there is no cooperation between different entities of energy sector. But after new market structure, all the entities are free to take their own decisions as an independent entity. Transmission open access of energy logistics is also comes into the picture, as all the generators and demands have the same right to access the transmission system. In this market situation, multiple utilities are using the same energy logistic network. This situation can be formulated as a cooperative game in which generators and demands are represented by players. This chapter deals with energy logistic cost allocation problems for a smart deregulated energy market. It is cooperative in nature as all the agents are using the same energy logistic network

    Microgrid Integration

    Get PDF
    Hybrid energy systems are becoming attractive to supply electricity to rural areas in all aspects like reliability, sustainability, and environmental concerns, and advances in renewable energy technology; especially for communities living far in areas where grid extension is difficult so generation of renewable energy resources like solar and wind energy to provide reliable power supply with improved system efficiency and significant cost reduction is best way. Besides this, the demand for renewable energy source in large urban cities is increasing, and their integration to the existing conventional grid has become more fascinating challenges. So the future requires stable and reliable integration of renewable distributed generators to the grid, and the local loads are close to distributed generators. Most existing power plants have centralized control system and remote power generation site while most renewable power generations are distributed and connected to lower or medium voltage networks near the customer. When the power demand increases, power failure and energy shortage also increase so the renewable energy can be used to provide constant and sustainable power. The chapter will provide a complete overview of microgrid system with its complete operation and control

    Short Term Load Forecasting of Distribution Feeder Using Artificial Neural Network Technique

    Get PDF
    This paper explains the load forecasting technique for prediction of electrical load at Hawassa city. In a deregulated market it is much need for a generating company to know about the market load demand for generating near to accurate power. If the gen-eration is not sufficient to fulfill the demand, there would be problem of irregular supply and in case of excess generation the generating company will have to bear the loss. Neural network techniques have been recently suggested for short-term load forecasting by a large number of researchers. Several models were developed and tested on the real load data of a Finnish electric utility at Hawassa city. The authors carried out short-term load forecasting for Hawassa city using ANN (Artificial Neural Network) technique ANN was implemented on MATLAB and ETAP. Hourly load means the hourly power con-sumption in Hawassa city. Error was calculated as MAPE (Mean Absolute Percentage Error) and with error of about 1.5296 % this paper was successfully carried out. This pa-per can be implemented by any intensive power consuming town for predicting the fu-ture load and would prove to be very useful tool while sanctioning the load

    Fuel-constrained joint heat and power dynamic economic environmental dispatch

    Get PDF
    The economical use of available fuel for producing electricity has been a very important challenge for power companies due to the continuously declining supply of fossil fuels. FCJHPDEED (fuel-constrained joint heat and power dynamic economic environmental dispatch) and JHPDEED (joint heat and power dynamic economic environmental dispatch) with DSM (demand-side management) integrating solar PV plants, WTGs (wind turbine generators), and PHS (pumped hydro storage) plants have been presented. Using SPEA 2 (strength Pareto evolutionary algorithm 2) and NSGA-II (non-dominated sorting genetic algorithm-II), FCJHPDEED and JHPDEED have been solved. It is seen that the results obtained without fuel constraints are more optimal than the results obtained with fuel constraints. The joint heat and power dynamic economic dispatch cost obtained with fuel constraints is approximately 2.14% more than the cost obtained without fuel constraints and joint heat and power dynamic emission dispatch, and the emission obtained with fuel constraints is approximately 6.7% more than the emission obtained without fuel constraints

    Smart Microgrid Energy Management Using a Novel Artificial Shark Optimization

    Get PDF

    Optimal Allocation of Distributed Generation with the Presence of Photovoltaic and Battery Energy Storage System Using Improved Barnacles Mating Optimizer

    Get PDF
    This paper proposes an improved version of Barnacles mating optimizer (BMO) for solving the optimal allocation problem of distribution generator (DGs) in radial distribution systems (RDSs). BMO is a recent bioinspired optimization algorithm that mimics the intelligence behavior of Barnacles\u27 mating. However, like with any metaheuristic optimization approach, it may face issues such as local optima trapping and low convergence rate. Hence, an improved BMO is adopted based on the quasi oppositional (QOBMO) and the chaos maps theories (CQOBMO). The two improvement methods are applied to increase the convergence performance of the conventional BMO. To prove the efficiency of the improved QOBMO and CQOBMO algorithms, 23 benchmark functions are used, and the accomplished results are compared with the conventional BMO. Then, the improved algorithm is applied to minimize the total power and energy losses in the distribution systems considering the uncertainty of DG power generation and time‐varying load demand. The uncertainty of DG is represented using photovoltaic‐based DG (PVDG). The improved method is employed to find the optimal power scheduling of PVDG and battery energy storage (BES) during 24 h. Two standard IEEE RDS (IEEE 33‐bus and IEEE 69‐bus) are used to simulate the case studies. Finally, the obtained results show that significant loss reductions (LRs) are achieved using the improved BMO where LRs reach 65.26%, and 68.86% in IEEE 33‐bus and 69‐bus, respectively, in the case of PVDG integration. However, using PVDG and BES the energy loss reductions reach 64% and 67.80% in IEEE 33‐bus and 69‐bus, respectively, which prove the efficiency of the improved BMO algorithm in finding the optimal solutions obtained so far

    Harmonic mitigation and power quality improvement in utility grid with solar energy penetration using distribution static compensator

    Get PDF
    Abstract Distribution static compensator is based on power electronic devices technology which is utilized to supply rapid changes in active power as well as reactive power of utility grids. This is useful to achieve corrections in power factor, balancing of load, compensation of current and filtering of harmonics. Therefore, proposed work investigates the improvement of the power quality by utilizing the distribution static compensator, which is equipped by battery energy storage system and interfaced to distribution network with solar photo voltaic (PV) energy integration. In the present study, distribution static compensator is controlled using a control strategy based on the synchronous reference frame theory. Customised IEEE‐13 nodes test system incorporating solar PV generation and distribution static compensator, is utilized to perform the harmonic mitigation and power quality analysis. Disturbances of power quality and harmonics have been investigated due to abrupt changes in the insolation of solar radiation, outage of PV plant from grid and synchronization of PV plant to grid. MATLAB/Simulink environment is utilized to perform the study. Effectiveness of a developed approach is validated by comparing results of simulation with results extracted in real time using real time digital simulator. Results indicate that the developed method is more effective for harmonic mitigation and improving power quality of electrical power in distribution network integrated with solar PV generation. Performance of the approach is compared with the performance of methods reported in the literature to establish the suitability of the method for harmonics mitigation and power quality improvement in grid with solar energy

    Integrated optimization of smart home appliances with cost-effective energy management system

    Get PDF
    Smart grid enables consumers to control and schedule the consumption pattern of their appliances, minimize energy cost, peak-to-average ratio (PAR) and peak load demand. In this paper, a general architecture of home energy management system (HEMS) is developed in smart grid scenario with novel restricted and multi-restricted scheduling method for the residential customers. The optimization problem is developed under the time of use pricing (TOUP) scheme. To optimize the formulated problem, a powerful meta-heuristic algorithm called grey wolf optimizer (GWO) is utilized, which is compared with particle swarm optimization (PSO) algorithm to show its effectiveness. A rooftop photovoltaic (PV) system is integrated with the system to show the cost effectiveness of the appliances. For analysis, eight different cases are considered under various time scheduling algorithm
    corecore