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Abstract—Smart grid enables consumers to control and sched-
ule the consumption pattern of their appliances, minimize energy
cost, peak-to-average ratio (PAR) and peak load demand. In
this paper, a general architecture of home energy management
system (HEMS) is developed in smart grid scenario with novel
restricted and multi-restricted scheduling method for the residen-
tial customers. The optimization problem is developed under the
time of use pricing (TOUP) scheme. To optimize the formulated
problem, a powerful meta-heuristic algorithm called grey wolf
optimizer (GWO) is utilized, which is compared with particle
swarm optimization (PSO) algorithm to show its effectiveness. A
rooftop photovoltaic (PV) system is integrated with the system
to show the cost effectiveness of the appliances. For analysis,
eight different cases are considered under various time scheduling
algorithms.

Index Terms—Demand side management, GWO, home energy
management system, PSO, peak-to-average ratio.

I. INTRODUCTION

EVER increasing electricity demand, rising energy genera-
tion cost and growing renewable energy generation posed

the limit on the production of energy from the conventional
energy sources [1]. All these challenges motivate the electric
utilities to focus on demand side management (DSM) tech-
niques. Electricity usage report in United States suggested that
at least 30% of electric power is wasted from the 72% of the
total power that is consumed by the residential and commercial
users [2]. Further, European Union (EU) is also decided to
enhance the renewable energy production up to 20% of the
total electricity production till 2020. Along with that EU is also
targeted to enhance the generation by improving the energy
efficiency up to the level of 20% [3]. High quality and reliable
power supply is available with the advancement of information
and communication technology (ICT) in the field of energy
sector. ICTs are the most important component in the smart
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grid, which transfer information between two nodes. This pro-
cess is very much crucial to control and manage various smart
grid components efficiently under variable demand situation.
To reduce the cost of infrastructure, environmental impacts and
increase the reliability of the system, distributed generations
like solar and wind can be integrated with the smart grid [4].
This helps to manage the energy consumption of smart home
appliances by energy management system (EMS), which is
also the aspect of smart grid [5].

In DSM, various techniques and algorithms have been
adopted to minimize the cost of electricity billing based
on TOUP tariffs and incentives. Consumers can generate
renewable energy to supply their appliances and if there is
any excess production, they will sell it to the utility grid
based on the grid codes and TOUP, which varies through the
day [6]. A novel approach of power hubs is presented in [7]
for demand side management in smart homes. These power
hubs control the loads individually. Shah et al. [8] proposed an
energy management system for smart building, integrated with
energy storage system by using multi-agent system (MAS).
This research ignored the PAR that controls the horizontal load
distribution within a day. Mahmood et al. [9] utilized BPSO
based realistic scheduling mechanism (RSM) to schedule the
home appliances and minimize user frustration and maximize
utilization of appliance under the given constraints. Huang
et al. [10] proposed a hybrid PSO-DE algorithm in order to
manage appropriate allocation of energy resources to the end
users.

In [11], a cooperative PSO has been used to optimize the
energy consumption of both time-shiftable and power-shiftable
home appliances. Yang et al. [12] developed a new interactive
teaching–learning optimization (ITLO) method for voltage
source converter based high voltage direct current (VSC-
HVDC) systems with the offshore wind farm integration.
Kazemi et al. [13] developed the EMS to manage energy
usage of appliances, by GWO, which is followed by genetic
algorithm (GA), but the system is not integrated with ESS
and energy-shiftable scheduling. Yang et al. [14] proposed
a new grouped GWO (GGWO) technique for getting the
optimum value of interactive proportional-integral controllers’
parameters of doubly-fed induction generator based wind
turbines. An efficient HEMS has been introduced by Zhao
et al. [3] to minimize electricity cost and PAR. In this
research GA is used to solve the formulated minimization
problem and the inclining block rate (IBR) model is adopted to
restrict over energy consumption of home appliances. Rahim
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et al. [15] introduced the HEMS, which is formulated via
multiple knapsacks and ant colony optimization (ACO).

However, due to the unpredictable nature of human behavior
and variable performance of most of the home appliances
with non-linear and complex energy consumption pattern,
the majority of the techniques listed cannot tackle HEMS
problem efficiently. To accomplish energy cost minimization,
PAR reduction and peak load minimization sometimes these
techniques ignored the comfort level of the users. In addition
to that, when the number of appliances increased to a certain
extent, the stated algorithms converged slowly. Therefore, in
this work the following methods are taken:

1) GWO is implemented to minimize the energy billing and
PAR, without highly affecting the comfort level of the user.

2) An optimal control model is developed for smart building
appliances to schedule the load. Most of the literatures sim-
plified these models as linear models. This work has extended
these models as binary non-linear optimization problem.

3) Different constrained problems are solved simultane-
ously. The peak demand, PAR and cost of electricity consump-
tion has been monitored without highly affecting the comfort
level of the users by scheduling of the appliances to convenient
times within a day.

4) Two novel techniques called ‘restricted’ and ‘multi-
restricted’ time range scheduling are proposed for scheduling
the appliances in an efficient way.

II. LOAD CATEGORIZATION AND ELECTRICITY TARIFF

In EMS of residential building, scheduling of different loads
can be achieved by specifying the type of loads to be scheduled
and characteristics of the given loads. These characteristics
include the operation duration and average energy utilization
of each appliance. Generally, home appliances are classified
into three major groups, i.e. base line (non-shiftable), uninter-
ruptable and interruptable flexible loads [3].

A. Home Appliances Used

In this paper, for the analysis of the proposed problem a
mid-size home is considered and the load profiles of each
home appliance are discussed in Table I. A 5 kW roof top
solar PV on-grid system has integrated into this work. For
that purpose the PV generation profile of Hawassa city is
presented in Fig. 1. Each of the appliances has a definite
interval of time for the completion of the operation and thus
has a definite power usage vector that has to be developed
either from the specification of the given appliance or can

TABLE I
APPLIANCES USED IN THIS STUDY

List of appliances Power rating (kW)
Washing machine with dryer 3
Electric oven (morning hours) 2.15
Electric oven (evening hours) 2.15
Refrigerator 0.225
Electric iron 1.5
Water heater 1.5
Table fan 0.025
Coffee grinder 0.1

be determined experimentally at equal duration of operation
time. It is assumed that all the appliances are working with
their maximum power rating specified in their Specification
Manuel.

1 unit=60 minutes
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Fig. 1. PV generation profile of Hawassa city.

B. Electricity Tariff Model

The effectiveness of the proposed system, while solving the
fitness function, is explained by taking Hawassa city, Ethiopia
as a case study and implementing the TOUP model.

In order to promote the production of electricity by the
users, the electric utility gives incentives for the customers
those are generating power from the renewable energy sources.
Beyond satisfying their energy demand, when they have sur-
plus production, they tend to sell that surplus energy to the
utility grid and benefit from the net metering.

In actual situation, to attract the users and produce energy
from renewable sources, the feed in tariff should be higher than
the grid tariff. But, in this study, to show the effectiveness
of the proposed system model, the grid tariff (TOUP) and
feed in tariff have taken the same value. In addition, to let
the users shift their energy consumption from peak hour to
off-peak hours, the electricity cost in off-peak duration must
be lowered than that in the off peak hours. This can reduce
the higher energy demand and following stress and instability
problems in the utility grid.

The cost of the electricity in Ethiopia for residential con-
sumers for the first 50 kWh is 0.2730 Birr/kWh. By assuming
the electricity cost during peak duration is 50% higher than
that of off-peak duration then, the TOUP model designed in
this work is shown in Table II.

TABLE II
THE PROPOSED TOUP MODEL

Hours Price (TOUP) in Birr/kWh
10:00 PM–7:00 AM 0.2730
7:12 AM–9:48 PM 0.4095

III. PROBLEM DEVELOPMENT

Initially, 24 hours of the day are split into time slots. Each
hour is split into 5 time slots, i.e. each time slot is of 12-
minutes, and the total time slots available in a day are 120.
These time slots are represented by s ∈ S , {1, 2 . . . 120}.
The time slot is made sufficiently small to conveniently
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perform the problem by GWO. Therefore, 12 minutes is the
shortest operation time of any appliance. The integer multiples
of the 12-minute time intervals is fixed to the length of
operation time interval (LOT) of each schedulable appliance.
The unit of LOT in this study is assumed to be the number
of time slots. It represents very small errors of few seconds,
which can be ignored. The power consumption scheduling
vector Pa is given by:

Pa ,
[
P 1, P 2, . . . , P 120

]
(1)

where, P s
a represents the power consumption of ath appliance

for sth time slot in kWh. The power consumption value per
hour is assumed to be fixed for all appliances based on their
specifications. For appliance a, the energy consumption per
hour is denoted by:

P s
a =

Xa

5
(2)

where, Xa represents the power consumption value per hour,
during the time slot. Equation (2) represents the power rating
of shiftable appliances per slot. In this case, the number of
slots per hour is 5. For all schedulable appliances, the power
consumption scheduling matrix P is defined as:

P =

P |P s
a =

Xa

5
, ∀a ∈ A s ∈ [ta, ta + la]

P s
a = 0, ∀a ∈ A s ∈ S\[ta, ta + la]

(3)

The scheduling vector is given by adding the “Power
Matrix” column wise as shown below:

Psch = {Psch|P s
sch =

∑
P s
ak,∀s ∈ S} (4)

where Psch is a vector representing the total power requirement
of shiftable appliances in each time slot s.

A. The ON and OFF Decision Variable

The decision variable Y s
ak determines the ‘on’ and ‘off’

status of the schedulable appliances.
The first objective of the HEMS is to reduce the billing cost

by minimizing the PAR of the load. The minimum electricity
cost is determined based on the TOUP within 24 hours of the
day. Let Cs be the electricity price, based on the TOUP in the
time slot s. The fitness function, fcost becomes as follows.

Fcost,1 = min

n∑
s=1

Cs

(
m∑

a=1

u∑
k=1

P s
akY

s
ak

)
(5)

s.t. αa ≤ ta ≤ (βa − la)

where P s
ak is the load demand in each appliance a in phase k

at time slot s. Y s
ak represents the ‘on’ and ‘off’ binary decision

variable. The binary decision variable Y s
ak ∈ {0, 1} decided the

‘on’ and ‘off’ status of each appliances. ta is a variable, which
shows the optimal time for the operation of the appliance a.
la is the LOT i.e. the power consumption of each appliance is
valid within the proper scheduling, αa and βa be the start and
end time slots of the operation of each appliance (βa > αa).

With the incorporation of stand-alone roof-top solar PV, (5)
becomes:

Fcost,2 = min

n∑
s=1

m∑
a=1

u∑
k=1

(CsP s
akY

s
ak − gsρ

s
akY

s
ak) (6)

where, gs is the feed-in tariff, ρsij represents the power
produced by the roof top solar PV system in sth time slot.

By replacing the variable P s
akY

s
ak with P s

sch,ak and ρsakY
s
ak

with Gs
schm,ak, the objective function for reduction of con-

sumers’ electricity bill without including the solar PV system
is presented by:

min

120∑
s=1

(CsP s
sch) (7)

s.t. αa ≤ ta ≤ (βa − la)

With the incorporation of the solar PV system, the objective
function will be updated as:

min

120∑
s=1

(CsP s
sch − gsGs

schm) (8)

s.t. αa ≤ ta ≤ βa − la
The reduction of PAR is:

minPAR =
Max (Psch)

Avg (Psch)
(9)

A customer’s dissatisfaction value can be minimized by
scheduling. In order to model and quantify user dissatisfaction,
a delay time rate function is introduced.

min
∑

a ∈ Afsn (10)

where, fsn represents the discomfort related with the shiftable
appliance. It is calculated by delay time rate (DTR) of shiftable
appliances, as shown in (11) [16]:

DTR =

(
ta − αa

βa − la − αa

)
∀a ∈ A (11)

where, αa and βa represents the start and end time ranges
to finish the operation of the appliance. la is the length
of operation duration, and ta is the actual starting time.
Additionally, a delay parameter g > 1 can also be inserted to
associate fsn as gDTR. Thus, discomfort related with shiftable
appliance is as follows:

fsn =
∑
a∈A

gDTR (12)

B. Constraints

The following constraints are considered to solve the for-
mulated objective functions.
1) Energy Constraints

The load phases of each appliance must fulfill their energy
requirements. This constraint is explained as follows:

1

5

m∑
s=1

P s
ak = Eak ∀ {a, k} (13)

For appliance a, load phase k and time slot s, P s
ak is the load,

Eak is the energy needed. The upper limits of the load for
all appliances are restricted by the utility to certain predefined
limit θs.

m∑
s=1

P s
ak ≤ θs (14)
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2) PV Generation Constraint
The power generated by the PV system is in between the

minimum and maximum power produced by the PV panel
capacity within a day.

Pg,min ≤ ρ ≤ Pg,max (15)

where, Pg,min is the minimum power production and Pg,max is
the maximum power production using the PV system within a
day integrated to the grid system. When the power production
from PV is minimum, i.e. ρ < Pg,min, all the power demanded
by the appliances will be fed from utility grid.
3) Power Balance Constraint

J +Q = n (16)

where, J is the number of controllable appliances, Q is the
number of uncontrolled appliances and n is the total number
of appliances.
4) Time Constraint

Each scheduled load appliance cannot be interrupted until
it has finished its operation of load phases. It is also known
that the next load phase cannot be started unless the previous
load phases finished their operation.

Y s
ak + γsak = 1 (17)

When the value of binary decision variable Y s
ak is binary 1,

then the value of the auxiliary decision variable γsak is binary
0 and vice versa. Decision variable γsak indicates whether the
previous task of operation has finished or not.

As previously assumed that all the appliances are operated
at their specified ratings during operation periods, different
constraints are required to satisfy the demand management,
which are as follows:

βa − αa ≥ la (18)

The range of the operation start time is in between αa and
βa − la.

ta ∈ [αa, βa − la] (19)

The number of cycles for the appliances’ operations is
obtained as follows:

Θ = St,end − St,st − la + 2 (20)

where, Θ is the number of cycles available for an appliance to
operate, St,st and St,end are the starting and end times for the
appliance’s operation in the user defined range, and la is the
LOT of an appliance. Table III presents the various parameters
of schedulable load appliances.

IV. NOVEL MULTI-RESTRICTED TIME RANGE
SCHEDULING

Multi-restricted time range scheduling is a type of schedul-
ing in which one or more constrained, non-overlapping re-
stricted operation cycles and home appliances are allowed to
be scheduled within those operation time ranges. Without vi-
olating all energy and time constraints, the load scheduler has
a freedom to search the best combination of operation cycles
in which the appliance tends to operate. The fitness function
would be calculated at minimum peak load while maintaining
smooth horizontal load distribution within hours of the day as
much as possible. Between these non-overlapping, restricted
operation cycles, one cycle is selected at a time stochastically
for each appliance within their length of operation duration
and available operation cycles.

In multi-restricted time range scheduling, the length of
operation duration and operation starting times are expressed
as follows:

la =


la,1, if ta,1 ∈ [αa,1, βa,1 − la,1]
la,2, if ta,1 ∈ [αa,2, βa,2 − la,2]
0, else

(21)

s.t.

αa,1≤ la1 ≤ βa,1 − αa,1 (22)
αa,2≤ la2 ≤ βa,2 − αa,2 (23)

The operation starting time is in the range of ta,1 and ta,2.

ta,1 ∈ [αa,1, βa,1 − la,1] (24)
ta,2 ∈ [αa,2, βa,2 − la,2] (25)

where, la,1, la,2 are the LOTs and αa,1, αa,2 are the starting
time slots. βa,1, βa,2 are the end time slots and ta,1, ta,2 are
the possible starting times between starting and end time of
slot ranges.

V. FORMULATION OF GREY WOLF OPTIMIZATION
ALGORITHM FOR SMART HOME APPLIANCES SCHEDULING

The GWO is a recent meta-heuristic technique, which
mimics the leadership hierarchy and hunting mechanism of the
grey wolves (canis lupus). To model the leadership hierarchy,
four kinds of grey wolves are utilized. Those include the
alpha, beta, delta and omega. The basis of GWO algorithm
is the democratic behavior and the hunting mechanism of the
grey wolves [17]. Both the male and female wolves are the

TABLE III
PARAMETERS OF SCHEDULABLE LOAD APPLIANCES

Appliances Power rating
(kW)

Actual OTD
(min)

Daily Energy
consumption
(kWh)

Energy
consumption per
slot (kWh)

Number of slots
assigned

Washing machine with dryer 3 180 9 0.6 15
Electric oven-1 (morning hours) 2.15 45 1.72 0.43 4
Electric oven-2 (evening hours) 2.15 45 1.72 0.43 4
Refrigerator 0.225 1380 5.175 0.045 115
Electric iron 1.5 24 0.6 0.3 2
Water heater 1.5 60 1.5 0.3 5
Table fan 0.025 120 0.05 0.005 10
Coffee grinder 0.1 12 0.02 0.02 1
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leaders in the pack and known as alpha (α). The second levels
of the grey wolves (subordinate wolves) are known as beta
(β). The tasks of the beta grey wolves are helping the alpha
wolves in the decision making and other activities in the pack.
The wolves at third level are known as delta (δ) those have
to submit to alphas and betas, but control the lowest rank
grey wolves i.e. omega (ω) in the hierarchy. These omega (ω)
wolves act as scapegoat in the pack. Fig. 2 shows the flow
chart of GWO for proposed smart home appliances scheduling
problem.

Start

Generation of Initial population randomly

Define the initial cost function

Finish

Yes

No

Initialization of Population size, Coefficients vectors, Maximum
iterations, Number of generations and their limits

Calculate Xα, Xβ, Xδ

Update the position of current search agent X(t+1)
X(t+1)=Xα+Xβ+Xδ/3

Update A and C. Calculate Fitness value

For each search agent update  Xα, Xβ, Xδ

iter<max.iter

Iter+1

Fig. 2. GWO flow chart.

VI. RESULT AND DISCUSSION

The proposed smart home appliances scheduling problem is
solved in eight different scenarios by using GWO algorithm.
Further, a comparison is presented with PSO [18] technique to
show the effectiveness of the GWO algorithm. The different
scenarios for shiftable load appliances are introduced in the
following subsections.

The maximum load constraint, control the peak load demand
in home and it is less than or equal to 5.5 kW in the above
cases.

A. Shiftable Load Appliances Scheduled with Fixed Time
Range

In this scheduling, the operation time range for each appli-
ance is adjusted by the user on the assigned time slots. There
is one or more than one operation cycle available for each
schedulable appliance in a day. Users always have to schedule
and adjust the parameters of the appliances manually, followed
by the utility electricity pricing (TOUP) signal. In Table IV
parameters of residential load appliances for fixed time range
scheduling are provided.

Figure 3 shows the residential daily load demands under
fixed time scheduling with TOUP. It also shows the maximum
load demand within 24 hours in a day. Fig. 4 shows the
residential daily load demands in the fixed time range without
scheduling. The maximum peak load in a day is found at time
slot 38 up to 39, i.e. 7:24 AM to 7:36 AM, which is not
preferable in terms of cost minimization. For example, rather
than using electric iron during this period of time, the user
can shift it to 12:00 AM to 12:48 AM, which is the off-peak
duration. But it might not be good in terms of maximizing the
comfort of the user who is not interested in using it early in
the morning. Most of the time, slots from 1 up to 15, which
are off-peak hours during night, are occupied.
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Fig. 3. Residential daily load demand pattern in fixed time scheduling (1unit
= 12 minutes).

To measure the PAR during the day, the mean value of the
scheduled load demand is calculated. For minimizing the peak
load demand, the appliances scheduled should be distributed
to all the time slots within a day, without disturbing the
comfort level of the resident. To simulate the peak load, the
fitness function in (9) is optimized within 24 hours of the day

TABLE IV
PARAMETERS OF SCHEDULABLE APPLIANCES FOR FIXED TIME SCHEDULING

Appliances Power rating
(kW)

Energy
consumption per
slot (kWh)

Number of
slots assigned

Start time
(hour)

End time
(hour)

OTI (time
slot)

Washing machine with dryer 3 15 15 12:00 AM 2:48 AM 1–15
Electric oven-1 2.15 4 4 7:00 AM 7:45 AM 36–39
Electric oven-2 2.15 4 4 7:15 PM 8:00 PM 97–100
Refrigerator 0.225 115 115 12:00 AM 10:48 PM 1–115
Electric iron 1.5 2 2 7:15 AM 7:30 AM 37–38
Water heater 1.5 5 5 10:00 AM 11:00 AM 51–55
Table fan 0.025 10 10 2:00 PM 3:00 PM 71–80
Coffee grinder 0.1 1 1 12:15 PM 12:20 PM 62
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Daily load demand without PV for unscheduled load
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Fig. 4. Residential daily load in fixed time range without scheduling.

irrespective of the TOUP. The PAR calculated during 24 hours’
time horizons is 4.7005.

The fitness value in (7) is calculated while minimizing PAR
within a day. The total cost of electricity in fixed time range
scheduling with the mean value of 4.7005 is 6.5568 Birr/day.
The total energy consumption per day is 19.785 kWh. As seen
from Table IV, the washing machine is scheduled to operate
between 12:00 AM and 2:48 AM during night time. If the
operation time of washing machine is shifted to day time
during peak hours, for example from 9:00 AM to11:48 AM,
then the cost of electricity will rise to 7.7853 Birr/day and the
PAR will be 5.7316. The maximum peak load is 4.725 kW,
which is between time slots 51 to 55 (i.e. 10:00 AM–10:48
AM).

B. Load Appliances Scheduling with Restricted Time Range

In this scheduling, the starting and end time slot ranges for
the appliances’ operation that the user wants the appliance to
operate in between, are specified. Between these time ranges,
the position of the appliance to operate is determined by the
load scheduler stochastically.

Then, the proposed algorithm selects the best combination
of operation with minimum PAR and electricity cost. In
this scheduling, the appliances are scheduled in the allowed
operation cycle ranges, which minimizes the allocation of
appliances to the inconvenient time slots. Table V presents the
operation start and end time for the restricted time scheduling.

From Fig. 5, the peak load demand per slot of appliances is

below 5.5 kW, which satisfies the power demand constraint.
The peak load during the day from time slot 3–15, i.e. 12:24
AM–2:48 AM, is 3.225 kW by GWO; and from time slot 35–
36, i.e. 6:48 AM–7:00 AM, is 3.875 kW by PSO schedulers.
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Fig. 5. The daily load pattern under restricted time scheduling and PV
generation profile.

The PAR obtained with restricted time scheduling using
GWO is 3.9121 and using PSO is 4.7005. The cost of electric-
ity is 6.2988 Birr/day by GWO and 6.4394 Birr/day by PSO
scheduler. In restricted time range scheduling, using GWO
scheduler, the electric energy cost and PAR are 3.9% and
16.8%, lower than that of fixed time scheduling, respectively.

The daily peak power demand from grid without PV inte-
gration within a day using GWO is 3.225 kW for time slot
13 to 27, i.e. 2:24 AM to 5:12 AM. The net daily peak power
demand from grid without PV integration within a day using
PSO is 5.375 kW for time slot of 44 to 47, i.e. 8:36 AM to 9:12
AM. Due to low pricing time during off-peak hours, time slots
from 31 to 50 are occupied in case of PSO load scheduler. With
GWO scheduler, low peak load has been achieved compared
to PSO scheduler.

From Fig. 6, the PAR without PV using GWO is 3.9121
while using PSO is 6.5201. The minimum cost without PV
using GWO is 6.2988 Birr/day, while using PSO is 6.3397
Birr/day. Table VI presents the operation start and end time
for multi-restricted time scheduling.

C. Load Appliances Scheduled with Variable Time Scheduling
In this scheduling, the possible operation starting time slot

is 1 and end time slot is 120. But the length of operation
time duration is greater than or equal to the starting time

TABLE V
OPERATION START AND END TIME FOR RESTRICTED TIME SCHEDULING

Group of Appliance Appliances Power rating
(kW)

Possible operation
start and end time
range (hour)

Number of
slots assigned

OTI

Non-interruptible
Flexible load
appliance

Washing machine
with dryer

3 12:00 AM–5:48 AM 15 1–30

Electric oven-1 2.150 6:24 AM−8:36 AM 4 33–44
Electric oven-2 2.150 6:12 PM−9:00 PM 4 92–106
Refrigerator 0.225 12:00 AM−10:48 PM 115 1–115

Interruptible flexible
load appliances

Electric iron 1.5 6:24 AM−8:12 AM 2 33–42

Water heater 1.5 9:00 AM−10:48 AM 5 46–55
Table fan 0.025 12:48 PM−3:48 PM 10 65–80
Coffee grinder 0.1 11:36 AM−1:24 PM 1 59–68
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TABLE VI
OPERATION START AND END TIME FOR MULTI-RESTRICTED SCHEDULING

Schedulable Appliances Power rating
(kW)

Possible Operation
Start and end time
range (hour)

Number of slots
assigned per
operation cycle

OTI

Washing machine with dryer 3 12:00 AM–3:12 AM
or 3:36 AM–6:36 AM

15 1–17 or
19–34

Electric oven-1 2.15 6:00 AM–6:48AM or
8:00 AM–9:36 AM

4 31–35 or
41–49

Electric oven-2 2.15 5:00 PM–6:12 PM or
7:12 PM–8:00 PM

4 86–92 or
97–101

Refrigerator 0.225 12:12 AM–11:48 PM 115 1–115
Electric iron 1.5 6:00 AM–7:00 AM or

7:36 AM–8:24 AM
2 31–36 or

39–43
Water heater 1.5 8:00 AM–9:24 AM or

9:48 AM–11:48 AM
5 41–48 or

50–60
Table fan 0.025 12:00 PM–1:48 PM

or 2:12 PM–4:00 PM
10 61–70 or

72–81
Coffee grinder 0.1 12:00 PM–1:48 PM 1 46–54 or

61–70
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Fig. 6. The daily load demand pattern under multi-restricted time scheduling
and showing PV generation profile.

slot and less than or equal to the end time slot minus the
starting time slot. The starting operation time slots are within
their available operation cycle range for an appliance, which
has to be scheduled. Table VII shows parameters used for the
simulation of schedulable load appliances under variable time
range scheduling.

The daily load pattern under variable time scheduling
scheme is shown in Fig. 7.

At maximum iteration, which is 500, the load demand
pattern during the day is shown in Fig. 7. The peak load
demand with GWO scheduler is 3.225 kW, which is from
time slot 35 to 49 (i.e. from 6:48 AM to 9:36 AM).

Even if most of the time slots within a day are occupied, few
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Fig. 7. Residential daily load pattern demands under variable time range.

of the loads are occupied between those time ranges, which
increases the peak demand. Using PSO, the calculated peak
load demand within a day is 3.25 kW, which is from the time
slots 25–39 (i.e. 4:48 AM–7:36 AM). The drawback of this
type of scheduling mechanism is that it assigns some of the
appliances to inconvenient time slots to operate. The main
concern in this scheduling is the minimization of peak load
while maintaining the load distribution within a day as smooth
as possible. The PAR obtained on variable time scheduling
at maximum iteration using GWO and PSO are 3.9121 and
3.9424, respectively. The cost of electricity calculated by using
GWO and PSO are 5.8497 and 6.0906 Birr/day, respectively.

TABLE VII
PARAMETERS OF SCHEDULABLE APPLIANCES

Appliances Daily Energy
consumption
(kWh)

Energy
consumption per
slot (kWh)

Number of slots
assigned

OTI (Slot
No.)

Number of
available
operation cycles

Washing machine with dryer 9 0.6 15 1–120 106
Electric oven-1 1.72 0.43 4 1–120 117
Electric oven-2 1.72 0.43 4 1–120 117
Refrigerator 5.175 0.045 115 1–120 6
Electric iron 0.6 0.3 2 1–120 119
Water heater 1.5 0.3 5 1–120 116
Table fan 0.05 0.005 10 1–120 111
Coffee grinder 0.02 0.02 1 1–120 120
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The peak load in restricted, multi-restricted and variable time
range scheduling with the absence of PV generation is similar,
which is 3.225 kW within a day using GWO load scheduler,
but 16.8% lower than fixed time range scheduling.

D. Fixed Time Range Scheduling Integrated with PV
In addition to the electric energy from utility grid, a 5 kW

roof-top solar PV system is installed and used during day time.
The energy generated from the PV panels is supplied via an
inverter, which is integrated with home area network (HAN).
The priority to supply appliances is given primarily to PV
panels under all scheduling scenarios. If the power generated
from the PV panels is not sufficient to supply the load of
appliances, the energy demand is fed from the utility grid.
If the energy generated from PV panels has surplus energy,
then it can be exported to the national grid. To optimize the
objective function, the same procedure is used as in case 1
and parameters in Table IV are used with the integration of
the PV system. The simulation result is shown in Fig. 8.

10

8

6

4

2

−2

−4

−6

−8

−10

0

0 20 40 60 80 100 120

Hours of the day

D
ai

ly
 l

o
ad

 d
em

an
d
 (

k
W

/s
lo

t)

Net daily load demand  for a system integrated with PV generation

Load demand
Energy Export

Fig. 8. The net daily load profile pattern integrated with PV energy under
fixed time scheduling (1 unit = 12 minutes).

As seen from Fig. 9, the net peak load demand during
the day is 3.225 kW, while the net peak PV generation after
satisfying the load demand is −4.3566 kW per slot in 24 hours
time horizon. PAR is 3.9121. The total energy demand per day
of appliance is 19.785 kWh. The energy amount of 8.69852
kWh can be sold to utility grid based on TOUP tariff. The net
energy imported from utility grid in kWh is 0. For example,
if the shifting of the position of washing machine in day time
during peak hours from 9:00 AM to 11:48 AM is done then
the cost of electricity is rise to −3.82 Birr/day, which is 149%
higher than the unscheduled load without PV. The PAR is
3.7523, which is 34% lower than the unscheduled load without
integrating with PV energy production.

Daily demand pattern for un-scheduled load is shown in
Fig. 9. Energy cost, peak load and PAR are lower in home
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Fig. 9. The daily load profile pattern of unscheduled load appliances
integrated with PV energy (1 unit = 12 minutes).

appliances, scheduled by using fixed time scheduling method
than that of unscheduled load appliances for both the system
integrated and not integrated with PV systems.

For a system not integrated with PV, both the peak load and
PAR in fixed time range scheduling are 17.99% lower than the
unscheduled load. The energy cost in a system not integrated
with PV generation using fixed time range scheduling is
15.78% lower than the energy cost of unscheduled load.
Similarly, for a system integrated with PV, by using fixed
time range scheduling, the peak load and PAR are higher than
unscheduled load. Most of the load demands in unscheduled
load profile are compensated with PV than that of fixed time
range scheduling.

Rather than compensating the load demand fully, most of the
PV generation in fixed time scheduling is exported to utility
grid. The cost of energy that utility should pay the users in a
system integrated with PV using fixed time range scheduling
is 2.35% higher than the energy cost in unscheduled load. A
comparative analysis is presented in Table VIII.

E. Restricted Time Scheduling Integrated with PV

In restricted time range scheduling, the same parameters
used in case 2 and Table V is used with the integration of
5 kW PV generation. Fig. 10 shows the net daily load demand
pattern. The upper portion, which is greater than zero, shows
the import from the utility grid. The lower portion, which is
negative, shows the export to utility grid.

In a system, integrated with PV, energy cost in restricted
time range scheduling is 4.86% and PAR is 1% lower than
fixed time range scheduling, respectively by GWO scheduler.

The net daily peak power demand from utility grid with PV
integration using GWO is 3.1909 kW and by PSO scheduler
is 3.225 kW within a day. The minimum PAR with PV using

TABLE VIII
DETAIL SUMMERY AND RESULT COMPARISON BETWEEN FIXED TIME RANGE SCHEDULING AND A SYSTEM WITHOUT SCHEDULING

Type of scheduling mechanism Working Mechanism Peak load PAR Energy cost (Birr/day)
Utility paid for the user User paid to the grid

Unscheduled System without integration of PV 4.725 5.7316 0 7.7853
System integrated with PV 3.0933 3.7523 3.82 0

Fixed time scheduling System without integration of PV 3.875 4.7005 0 6.5568
System integrated with PV 3.225 3.9121 3.9121 0
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Fig. 10. The net daily load demand pattern integrated with PV generation
for minimization of electricity cost under restricted time range scheduling.

GWO is 3.8707 while with PSO is 3.9121. The total energy
demand per day of the appliances is 19.785 kWh. Net Energy
imported from the utility grid is 0 while net energy exported
to the utility grid is 8.6985 kWh. The minimum energy cost
with PV using GWO is −5.3065 Birr/day while using PSO is
−5.2478 Birr/day based on TOUP.

F. Multi-restricted Time Range Scheduling Integrated with PV

All the data used in case 3 and Table VI is used to optimize
PAR, energy cost and peak load in multi restricted time range
scheduling. The net daily load demand pattern for a system
integrated with PV generation is shown in Fig. 11. The net
daily peak power demand from grid with PV integration using
GWO is 2.8543 kW while using PSO is 3.225 kW. The
minimum PAR with PV integration using GWO is 3.4624,
while with PSO is 3.8707. The minimum cost with PV
integration using GWO is −5.3065 Birr/day while using PSO
is −5.2246 Birr/day.
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Fig. 11. The net daily load demand pattern integrated with PV generation for
minimization of electricity cost under multi-restricted time range scheduling.

G. Variable Time Scheduling Integrated with PV

Since the scheduled load profile for the each appliance
is selected stochastically up to the maximum iteration point,
the shape of the load profile can be slightly changed during
iteration.

For the system, which is not integrated with PV generation,
energy cost in variable time range scheduling using GWO

load scheduler is 7.13% lower than the restricted time range
scheduling. Compared to fixed time range scheduling, the
energy cost and PAR in variable time range scheduling are
24.86% and 16.77% lower, respectively. For a system, which
is not integrated with PV energy generation, the peak load
in variable time range scheduling and restricted time range
scheduling are similar, which is 3.225 kW within a day. But,
it is 20.16% lower than the fixed time range load scheduling.
Fig. 12 presents the daily net load pattern of scheduled load
appliances integrated with PV energy under variable time
scheduling.
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Fig. 12. The daily net load profile pattern of scheduled load appliances
integrated with PV energy under variable time scheduling.

The net daily peak Power demand from grid with PV
integration using GWO is 0.79773 kW while using PSO is
3.875 kW. The minimum PAR with PV integration using GWO
is 1.0026 while using PSO is 2.881. The minimum total energy
demand per day of appliances is 19.785 kWh. The net energy
imported from utility grid is 0. The minimum cost with PV
generation using GWO is −5.7555 Birr/day while using PSO
is −5.5139 Birr/day based on TOUP.

VII. CONCLUSION

In this work, a smart home appliance scheduling problem
is formulated and optimized using novel restricted and multi-
restricted time range scheduling techniques, while satisfying
all time and energy constraints. The first objective deals with
the minimization of monthly electricity cost. The second and
third objectives deal with the minimization of the PAR and
maximum peak load demand, respectively. Since the problem
is non-convex type in nature, two powerful binary type meta-
heuristic optimization algorithms, i.e. GWO and PSO are
utilized in order to effectively solve the problem. The system
is integrated with a 5 kW roof-top PV panel with eight
shiftable load appliances. To solve the problem, eight case
studies are considered with and without PV integration and
detailed comparative analysis is presented. Results show the
effectiveness of the GWO technique over PSO in minimizing
the cost of electricity, PAR and maximum peak load demand.
PV integrated system enables users to export surplus energy
to utility grid and benefit from the feed-in tariff. The futuristic
enhancement of the current work may be to solve the problem
with modified GWO algorithms such as GGWO or other recent
meta-heuristic techniques such as ITLO under multi-objective
optimization framework for further optimizing the solution.
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