483 research outputs found

    Higgs Decay to Top Quarks at Hadron Colliders

    Full text link
    Higgs bosons which decay principally to top quarks, such as in the minimal supersymmetric model, produce a peak-dip structure in the ggttˉgg\to t\bar t invariant-mass spectrum. This structure is potentially observable at the CERN Large Hadron Collider. (see BNL theory home page http://penguin.phy.bnl.gov/bnl.html for recent preprints)Comment: CPP-94-18, BNL-60339, ILL-(TH)-94-

    Dips in Partial Wave Amplitudes from Final State Interactions

    Full text link
    We consider the dip-peak structures in the J=0 partial wave amplitudes for processes \gamma\gamma\rightarrow W^+W^-~ \mbox{and}~\gamma\gamma,gg\rightarrow t\overline{t} taking into account the corresponding Born term process and the rescattering process where the intermediate state is rescattered through the exchange of Higgs resonance state in the direct channel.Comment: 9 pages, CPP-93-21, 6 figures not include

    Improved lower bounds for the ground-state energy of many-body systems

    Full text link
    New lower bounds for the binding energy of a quantum-mechanical system of interacting particles are presented. The new bounds are expressed in terms of two-particle quantities and improve the conventional bounds of the Hall-Post type. They are constructed by considering not only the energy in the two-particle system, but also the structure of the pair wave function. We apply the formal results to various numerical examples, and show that in some cases dramatic improvement over the existing bounds is reached.Comment: 29 pages, 5 figures, to be published in Phys. Rev.

    New Lower Bound on Fermion Binding Energies

    Get PDF
    We derive a new lower bound for the ground state energy EF(N,S)E^{\rm F}(N,S) of N fermions with total spin S in terms of binding energies EF(N1,S±1/2)E^{\rm F}(N-1,S \pm 1/2) of (N-1) fermions. Numerical examples are provided for some simple short-range or confining potentials.Comment: 4 pages, 1 eps figur

    Constraints on the Universal Varying Yukawa Couplings: from SM-like to Fermiophobic

    Get PDF
    Varying the Standard Model (SM) fermion Yukawa couplings universally by a generic positive scale factor (FYuF_{Yu}), we study the phenomenological fit to the current available experimental results for the Higgs boson search at hadron colliders. We point out that the Higgs production cross section and its decay branching ratio to γγ\gamma\gamma can be varied oppositely by FYuF_{Yu} to make their product almost invariant. Thus, our scenario and the SM Higgs are indistinguishable in the inclusive HγγH\to \gamma\gamma channel. The current measurements on direct Yukawa coupling strength in the Hbbˉ/ττH\to b\bar{b}/\tau\tau channel are not precise enough to fix the scale factor FYuF_{Yu}. The most promising is the vector-boson-fusion channel in which the CMS has already observed possible suppression effect on the Yukawa couplings. Further more, the global χ2\chi^2 fit of the experimental data can get the optimal value by introducing a suppression factor FYu1/2F_{Yu}\sim1/2 on the SM Yukawa couplings.Comment: 16 pages, 12 figures, 5 tables, update analysis is supplemente

    A systematic correlation between two-dimensional flow topology and the abstract statistics of turbulence

    Full text link
    Velocity differences in the direct enstrophy cascade of two-dimensional turbulence are correlated with the underlying flow topology. The statistics of the transverse and longitudinal velocity differences are found to be governed by different structures. The wings of the transverse distribution are dominated by strong vortex centers, whereas, the tails of the longitudinal differences are dominated by saddles. Viewed in the framework of earlier theoretical work this result suggests that the transfer of enstrophy to smaller scales is accomplished in regions of the flow dominated by saddles.Comment: 4 pages, 4 figure

    Determination of hadronic partial widths for scalar-isoscalar resonances f0(980), f0(1300), f0(1500), f_0(1750) and the broad state f0(1530^{+90}_{-250})

    Get PDF
    In the article of V.V. Anisovich et al., Yad. Fiz. 63, 1489 (2000), the K-matrix solutions for the wave IJ^{PC}=00^{++} were obtained in the mass region 450 - 1900 MeV where four resonances f0(980), f0(1300), f0(1500), f0(1750) and the broad state f0(1530^{+90}_{-250}) are located. Based on these solutions, we determine partial widths for scalar-isoscalar states decaying into the channels pi-pi, K-anti K, eta-eta, eta-eta', pi-pi-pi-pi and corresponding decay couplings.Comment: Some typos were correcte

    Weakly-Bound Three-Body Systems with No Bound Subsystems

    Get PDF
    We investigate the domain of coupling constants which achieve binding for a 3-body system, while none of the 2-body subsystems is bound. We derive some general properties of the shape of the domain, and rigorous upper bounds on its size, using a Hall--Post decomposition of the Hamiltonian. Numerical illustrations are provided in the case of a Yukawa potential, using a simple variational method.Comment: gzipped ps with 11 figures included. To appear in Phys. Rev.

    A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem

    Full text link
    A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD process that can produce sharp current layers and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin current layers, it is highly desirable to use adaptively or statically refined grids to resolve them, and to maintain accuracy at the same time. The output of the spectral-element static adaptive refinement simulations are compared with simulations using a finite difference method on the same refinement grids, and both methods are compared to pseudo-spectral simulations with uniform grids as baselines. It is shown that with the statically refined grids roughly scaling linearly with effective resolution, spectral element runs can maintain accuracy significantly higher than that of the finite difference runs, in some cases achieving close to full spectral accuracy.Comment: 19 pages, 17 figures, submitted to Astrophys. J. Supp
    corecore