49 research outputs found

    Maternal obesity and gut microbiota are associated with fetal brain development

    Get PDF
    Obesity in pregnancy induces metabolic syndrome, low-grade inflammation, altered endocrine factors, placental function, and the maternal gut microbiome. All these factors impact fetal growth and development, including brain development. The lipid metabolic transporters of the maternalfetal- placental unit are dysregulated in obesity. Consequently, the transport of essential long-chain PUFAs for fetal brain development is disturbed. The mother’s gut microbiota is vital in maintaining postnatal energy homeostasis and maternal-fetal immune competence. Obesity during pregnancy changes the gut microbiota, affecting fetal brain development. Obesity and a high-fat diet in pregnancy can induce placental and intrauterine inflammation and thus influence the neurodevelopmental outcomes of the offspring. Several epidemiological studies observed an association between maternal obesity and adverse neurodevelopment. This review discusses the effects of maternal obesity and gut microbiota on fetal neurodevelopment outcomes. In addition, the possible mechanisms of the impacts of obesity and gut microbiota on fetal brain development are discussed

    Bioactives and their roles in bone metabolism of osteoarthritis: evidence and mechanisms on gut-bone axis

    Get PDF
    Bioactives significantly modify and maintain human health. Available data suggest that Bioactives might play a beneficial role in chronic inflammatory diseases. Although promised, defining their mechanisms and opting to weigh their benefits and limitations is imperative. Detailed mechanisms by which critical Bioactives, including probiotics and prebiotics such as dietary lipids (DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide), polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate inflammation and bone metabolism is limited. Certain dietary bioactive significantly impact the gut microbiota, immune system, and pain response via the gut-immune-bone axis. This narrative review highlights a recent update on mechanistic evidence that bioactive is demonstrated demonstrated to reduce osteoarthritis pathophysiology

    Planned early delivery or expectant management for late preterm pre-eclampsia (PHOENIX): a randomised controlled trial

    Get PDF
    © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: In women with late preterm pre-eclampsia, the optimal time to initiate delivery is unclear because limitation of maternal disease progression needs to be balanced against infant complications. The aim of this trial was to determine whether planned earlier initiation of delivery reduces maternal adverse outcomes without substantial worsening of neonatal or infant outcomes, compared with expectant management (usual care) in women with late preterm pre-eclampsia. Methods: In this parallel-group, non-masked, multicentre, randomised controlled trial done in 46 maternity units across England and Wales, we compared planned delivery versus expectant management (usual care) with individual randomisation in women with late preterm pre-eclampsia from 34 to less than 37 weeks' gestation and a singleton or dichorionic diamniotic twin pregnancy. The co-primary maternal outcome was a composite of maternal morbidity or recorded systolic blood pressure of at least 160 mm Hg with a superiority hypothesis. The co-primary perinatal outcome was a composite of perinatal deaths or neonatal unit admission up to infant hospital discharge with a non-inferiority hypothesis (non-inferiority margin of 10% difference in incidence). Analyses were by intention to treat, together with a per-protocol analysis for the perinatal outcome. The trial was prospectively registered with the ISRCTN registry, ISRCTN01879376. The trial is closed to recruitment but follow-up is ongoing. Findings: Between Sept 29, 2014, and Dec 10, 2018, 901 women were recruited. 450 women (448 women and 471 infants analysed) were allocated to planned delivery and 451 women (451 women and 475 infants analysed) to expectant management. The incidence of the co-primary maternal outcome was significantly lower in the planned delivery group (289 [65%] women) compared with the expectant management group (338 [75%] women; adjusted relative risk 0·86, 95% CI 0·79–0·94; p=0·0005). The incidence of the co-primary perinatal outcome by intention to treat was significantly higher in the planned delivery group (196 [42%] infants) compared with the expectant management group (159 [34%] infants; 1·26, 1·08–1·47; p=0·0034). The results from the per-protocol analysis were similar. There were nine serious adverse events in the planned delivery group and 12 in the expectant management group. Interpretation: There is strong evidence to suggest that planned delivery reduces maternal morbidity and severe hypertension compared with expectant management, with more neonatal unit admissions related to prematurity but no indicators of greater neonatal morbidity. This trade-off should be discussed with women with late preterm pre-eclampsia to allow shared decision making on timing of delivery. Funding: National Institute for Health Research Health Technology Assessment Programme

    On the uniqueness of a meromorphic function and its higher difference operator under the purview of two shared sets

    No full text
    Abstract In the paper, we investigate the uniqueness problem of a meromorphic function and its difference operator to the most general setting via two shared set problems and thus improve a recent result of Chen–Chen (Bull Malays Math Sci Soc 35(3): 765-774, 2012)

    Purification and characterization of lipoxygenase from aromatic and non-aromatic rice (<i>Oryza sativa </i>L.)

    No full text
    401-405Lipoxygenase (Lox) has been ex tensively purified from aromatic (Bas-370) and non-aromatic. (Pusa-834) rice varieties. Crude isolates of Lox from the aromatic varieties (Bas-370 and PB-1) showed higher specific activity (4-fold) when compared to non-aromatic varieties (Pusa-677 and Pusa-834). The activity was optimum at pH 8:0 in .all four varieties. Anionic PAGE of Lox from three days old seed lings revealed one extra band (Rm 0.48) III aromatic varieties, besides the presence of a major band (Rm 0.28) in all the four varieties. Elution profile of Lox from Bas-370 and Pusa-834 on DEAE-cellulose column showed three distinct peaks (L-1, L-2 and L-3), L-2 being the major fraction In both the varieties. SDSPAGE of purified L-2 from Bas-370 showed a single band of molecular mass ~88 kDa

    Maternal dietary fatty acids and their roles in human placental development

    No full text
    Fatty acids are essential for feto-placental growth and development. Maternal fatty acids and their metabolites are involved in every stage of pregnancy by supporting cell growth and development, cell signaling, and modulating other critical aspects of structural and functional processes. Early placentation process is critical for placental growth and function. Several fatty acids modulate angiogenesis as observed by increased tube formation and secretion of angiogenic growth factors in first-trimester human placental trophoblasts. Long-chain fatty acids stimulate angiogenesis in these cells via vascular endothelium growth factor (VEGF), angiopoietin-like protein 4 (ANGPTL4), fatty acid-binding proteins (FABPs), or eicosanoids. Inadequate placental angiogenesis and trophoblast invasion of the maternal decidua and uterine spiral arterioles leads to structural and functional deficiency of placenta, which contributes to preeclampsia, pre-term intrauterine growth restriction, and spontaneous abortion and also affects overall fetal growth and development. During the third trimester of pregnancy, placental preferential transport of maternal plasma long-chain polyunsaturated fatty acids is of critical importance for fetal growth and development. Fatty acids cross the placental microvillous and basal membranes by mainly via plasma membrane fatty acid transport system (FAT, FATP, p-FABPpm, & FFARs) and cytoplasmic FABPs. Besides, a member of the major facilitator superfamily-MFSD2a, present in the placenta is involved in the supply of DHA to the fetus. Maternal factors such as diet, obesity, endocrine, inflammation can modulate the expression and activity of the placental fatty acid transport activity and thereby impact feto-placental growth and development. In this review, we discuss the maternal dietary fatty acids, and placental transport and metabolism, and their roles in placental growth and development

    Maternal Docosahexaenoic Acid Status during Pregnancy and Its Impact on Infant Neurodevelopment

    No full text
    Dietary components are essential for the structural and functional development of the brain. Among these, docosahexaenoic acid, 22:6n-3 (DHA), is critically necessary for the structure and development of the growing fetal brain in utero. DHA is the major n-3 long-chain polyunsaturated fatty acid in brain gray matter representing about 15% of all fatty acids in the human frontal cortex. DHA affects neurogenesis, neurotransmitter, synaptic plasticity and transmission, and signal transduction in the brain. Data from human and animal studies suggest that adequate levels of DHA in neural membranes are required for maturation of cortical astrocyte, neurovascular coupling, and glucose uptake and metabolism. Besides, some metabolites of DHA protect from oxidative tissue injury and stress in the brain. A low DHA level in the brain results in behavioral changes and is associated with learning difficulties and dementia. In humans, the third trimester-placental supply of maternal DHA to the growing fetus is critically important as the growing brain obligatory requires DHA during this window period. Besides, DHA is also involved in the early placentation process, essential for placental development. This underscores the importance of maternal intake of DHA for the structural and functional development of the brain. This review describes DHA&rsquo;s multiple roles during gestation, lactation, and the consequences of its lower intake during pregnancy and postnatally on the 2019 brain development and function
    corecore