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Bioactives and their roles in
bone metabolism of
osteoarthritis: evidence and
mechanisms on gut-bone axis
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Bioactives significantly modify and maintain human health. Available data

suggest that Bioactives might play a beneficial role in chronic inflammatory

diseases. Although promised, defining their mechanisms and opting to weigh

their benefits and limitations is imperative. Detailed mechanisms by which

critical Bioactives, including probiotics and prebiotics such as dietary lipids

(DHA, EPA, alpha LA), vitamin D, polysaccharides (fructooligosaccharide),

polyphenols (curcumin, resveratrol, and capsaicin) potentially modulate

inflammation and bone metabolism is limited. Certain dietary bioactive

significantly impact the gut microbiota, immune system, and pain response

via the gut-immune-bone axis. This narrative review highlights a recent

update on mechanistic evidence that bioactive is demonstrated

demonstrated to reduce osteoarthritis pathophysiology.
KEYWORDS

bioactive, bone remodeling, gut microbiota, inflammation, obesity,
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1 Introduction

Osteoarthritis (OA) is an age-related degenerative disease severely impacting bone

health. The OA burden is prevalent globally (1) and also rapidly increasing in India in

the past decade (2). The OA mainly contributes to activity limitations and burdens the

Nation’s effective workforce and healthcare (3). Moreover, it has recently been reported

to affect the young (4) due to several underlying risks, including obesity, dietary,

lifestyle, environmental transitions, nutritional imbalances, gut dysbiosis,

metaflammation, and chronic diseases. The risk of developing osteoarthritis can be

reduced and prevented by managing these factors. However, the global emergence of

the metabolic syndrome (5) led to an incremental burden that forced us

to comprehend systemic inflammation and immunity before the symptoms
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influenced and directed toward osteoarthritis pathophysiology.

Musculoskeletal disorders (osteoarthritis, rheumatoid arthritis,

osteoporosis) are targets of unresolved inflammation associated

with the metabolism of long bone tissues. The interaction

between bone remodeling and inflammation is continuous and

modulated by immune response. A thorough understanding of the

disease associated with osteogenic changes, immunomodulation,

inflammation, and pain could be a basis required for holistic

therapeutic interventions.

Despite OA being a multifactorial disease, weight management

remains a primary focus for its prevention. The prevalence of OA

brought community awareness and frequent check-ups to detect the

disease at its early stages. Treatment of OA includes dietary

modifications, lifestyle changes, analgesics, intra-articular

preparations, and surgical procedures (6). The non-steroidal anti-

inflammatory drugs (NSAIDs) and corticosteroids are used with

potentially serious side effects. Thus, alternate therapeutics delay

and/or reduce the progression of chronic inflammatory diseases like

osteoarthritis is warranted. Nutrition, in maintaining healthy bone

and musculoskeletal health, in general, has led to the emergence of

Bioactives, nutraceuticals, botanicals, or herbal formulations,

helping delay the onset of the disease and sometimes treating

conditions. Functional foods and supplements may help the

immune system as their secondary metabolites can target

molecular pathways, ameliorating the disease. The pathogenesis of

bone disease is associated with disrupting the osteoclasts-

osteoblasts balance that governs bone remodeling. With their

bioactive properties and ability to intervene in signaling

pathways, nutraceuticals promise to help restore this balance (7–

9). Molecular mechanisms that may define the underlying benefits

of dietary bioactive against inflammatory diseases are limited.

Bioactivity can inhibit TLR4 (Toll-like Receptor 4) mediated

inflammation by modulating the gut microbiome (10). Dietary

bioactive takes on the intestinal flora diversity, and their release

of metabolites, activates immunomodulation by receptor signaling,

transmits a peripheral signal, modulates nociception, pain, and

systemic inflammation, and alters blood parameters, tissue

metabolism, and cytokine profile, as demonstrated by several

studies (discussed later).

Although the functions of bioactive compounds influencing

osteoarthritis pathophysiology are reported, their modulation of the

intestinal microbiome via the gut-bone axis is not known. In

addition, there is paramount evidence that gut microbiota

modulates host immune responses in osteoarthritis; however, the

exact mechanisms are still unknown (11). In that context, this

narrative review highlights recent mechanistic evidence on using

bioactive or functional foods to ameliorate osteoarthritis and

inflammatory diseases. In this article, Bioactives and their roles in

bone metabolism of osteoarthritis are proposed based on available

data and evidence. A comprehensive literature review was

conducted using PubMed, Scopus, and Science Direct databases.

The tenure of the search ranged from 2009 to 2023. The main aim of

this review is to describe the use of Bioactives in OA, highlighting

their molecular mechanisms of action.
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1.1 Osteoarthritis risk, pathophysiology,
intervention, and scope of research

Obesity, mainly upper body adiposity, poses a significant risk of

developing musculoskeletal disorders like osteoarthritis (12). The

epidemiological data suggested that women suffering from obesity

and people with a sedentary lifestyle had a higher prevalence of

osteoarthritis (13). Obesity, diabetes, and osteoarthritis are

interlinked, with the latter being a predominantly acquired risk

factor due to excess adiposity, increased mechanical load, loss of

muscle mass, and low-grade inflammation modulated by adipokines.

Type 2 diabetes (T2D), the most common form of diabetes, is a

significant consequence of physical inactivity and obesity (14). Glucose

intolerance and resistance to insulin developed during obesity result in

various metabolic disorders, including osteoarthritis. The most

detrimental effect of obesity is the mechanical load on weight-bearing

joints, leading to the progression of osteoarthritis (15). Studies indicate

that adiposity leads to low-grade inflammation, stress on weight-

bearing joints, and upregulates leptin, which can regulate

chondrocyte apoptosis. Distinct differences are visible between

normal bone and cartilage, and these features are influenced by

osteoarthritis (16). Normal cartilage exists in an avascular state,

which maintains the integrity of the tissue. However, cartilage no

longer remains in the avascular, and neovascularization occurs in a

diseased state. Chondrocyte clusters and osteophyte formation also

occur (17). The cartilage matrix also degenerates owing to increased

hydration and loss of proteoglycans, decreasing keratan sulfate and

hyaluronic acid. The resultant mechanical stress leads to surface

fissures in the articular cartilage (4, 18).

Both systemic and localized inflammation are associated with the

progression of osteoarthritis (19, 20), where several pro-inflammatory

cytokines and matrix metalloproteinase (MMPs) are involved at both

early and late stages of osteoarthritis. Interleukin (IL)-1b, IL-6, TNF-a,
matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 are

secreted mainly by chondrocytes (21). Diseased chondrocytes and

synoviocytes also express IL-1, type-1 IL-1 receptor, and type II

collagen. The OA progression correlates with inflamed synovium,

typically characterized by infiltrated neutrophils to the affected site,

mediated by several small chemotactic proteins or chemokines, such as

IL-1b, IL-6, IL-8, and others. Elevated IL-6 (22) and IL-8 (23) levels

were reported in synovial fluid fromOA patients compared to controls.

These chemokines are known to induce chondrocyte hypertrophy and

show an increased risk of cartilage loss. OA progression is also

mediated by cross-talk between growth factors and chemokine

productions. Connective tissue growth factor (CTGF or CCN2) is

also involved in several events of skeletogenesis by acting as amolecular

bridge for extracellular matrix (ECM) by modulating angiogenesis,

chondrogenesis, and osteogenesis (24). CTGF acted as a pro-

inflammatory mediator by producing IL-6 (25), a pro-angiogenic

modulator by producing IL-8 (26), and other chemokines. CTGF is

abundantly expressed in the OA (27), but its pathogenic role is unclear.

OA synovium in obesity is enriched with excess T-cells and B-cells,

where specific cartilage turnover markers are also elevated in obesity

compared with healthy (28). Thus, a detailed understanding of
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mediators and pathways that impact initiation to the progression of

osteoarthritis pathophysiology is required to design targeted therapies

for its intervention.

Bone remodeling and bone loss are controlled by a balance

between TNF-family protein, osteoprotegerin ligand (OPGL), and its

decoy receptor osteoprotegerin (OPG), preventing RANKL (receptor

activator of nuclear factor kappa b ligand) from binding to and

activating RANK (receptor activator of nuclear factor kappa b). The
OPGL receptor, RANK, is expressed on osteoclast precursors,

chondrocytes, and mature osteoclasts. The binding of RANKL to

RANK leads to osteoclastogenesis and inhibits osteoclast apoptosis

(29). Thus, balancing activities of myeloid origin bone-resorbing cells,

i.e., osteoclast with mesenchymal origin bone-forming cells, osteoblast

is modulated by RANKL and OPG actions. A dysregulated RANK-

RANKL-OPG system increases RANKL activity associated with

osteoporosis and secondary inflammation of bone disease (30). It has

been demonstrated that the RANKL/OPG ratio is consistently elevated

in inflammatory diseases. The OPGL regulates lymphocyte

development, organogenesis, and interactions between the immune

system’s dendritic cells and T-cells. Studies suggest activated T-cells

directly trigger osteoclastogenesis through OPGL and RANK (31).

Thus, modulators of T-cell activators could influence bone metabolism

by regulating OPGL production and bone loss.

The available treatment for osteoarthritis includes corticosteroid

injections like methylprednisolone acetate and triamcinolone,

hyaluronic acid injections, topical and oral non-steroidal anti-

inflammatory drugs, opioids, and surgical procedures like knee

arthroscopy (32). While corticosteroid injections and surgical

procedures carry a significant risk of infection and possible

hyperglycemia, NSAIDs and opioids can result in ulcers,

gastrointestinal perforation, and iatrogenic addiction (33). Recent

studies have shown the possible usage of regenerative medicine in

treating osteoarthritis (34). These include platelet-rich plasma

injections, proliferation therapy, and stem cell therapy. Mesenchymal

stem cells aid cartilage tissue regeneration by upregulating growth

factors, reducing the inflammatory response, and differentiating into

chondrocytes (35). However, significant concerns loom about biosafety

and disease risk over stem cell-based therapy for osteoarthritis. These

include the possibility of tumor formation, immune rejection,

formation of ectopic tissue, or differentiation into undesired cell

types (36). Bioactive enriched nutraceuticals and functional foods

demonstrated early evidence to relieve osteoarthritis (37), and

promised NSAID-like effects in ameliorating pain and function (38).

The ability of bioactive to function similarly to that of NSAIDs bereft of

potential side effects and thus can be exploited to delay disease

progression. However, current research is still in the early stages, and

it is essential to understand the underlying mechanisms in the

bioactive-mediated amelioration of osteoarthritis.
2 Molecular pathways involved in
osteoarthritis pathophysiology

In a chronic inflammatory state, particularly in rheumatoid

arthritis, persistent inflammation results in bone loss by volume

and mass (39) with a concomitant increase in local RANKL
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expression. Excess pro-inflammatory cytokines, including IL-6,

IL-1b, and TNF-a produced by osteoclasts and osteoblasts,

triggered the bone microenvironment by boosting RANK

expression and bone resorption phenotype (40). The interplay

of bioactive mediators and target cells could shape the

inflammatory and metabolic control of bone remodeling.

Therefore, activator and resolution of inflammation can impact

bone metabolism and disease.

Understanding molecular pathways associated with osteoarthritis

ensures an understanding the underlying reasons for disease pathology.

Various pathways play a key role in the onset and progression of

osteoarthritis, including Wnt/b-catenin, transforming growth factor b
(TGF-b), bone morphogenic protein (BMP), fibroblast growth factor

(FGF) signaling, nuclear factor kB (NF-kB) pathway, transient receptor
potential vanilloid 1 (TRPV1) pathway, and RANK/RANKL/OPG

pathway. In addition, various transcription factors and regulators

involved in osteoarthritis progression include RUNX2 (Runt-related

transcription factor 2), ADAMTS (a disintegrin and metalloproteinase

with thrombospondin motifs), mTOR (mammalian target of

rapamycin) and MMPs (41).
2.1 RANK/RANKL/OPG pathway

The role of RANK/RANKL/OPG and Wnt/b-catenin signaling

in osteoarthritis has been extensively studied (42). This diseased

state results in the alterations of both Wnt/b-catenin and RANK/

RANKL/OPG signaling, disrupting the homeostasis of bone

remodeling and upregulating pro-inflammatory cytokines.

RANKL activates RANK (43), while M-CSF (macrophage colony-

stimulating factor) and RANK initiate osteoclast differentiation

from hematopoietic stem cells (HSCs). The interaction between

RANKL and RANK also activates NF-kb and MAP kinases. On the

other hand, OPG, an antagonist, inhibits the binding between

RANK and RANKL, keeping the system in check. TNF-a, IL-6,
and IL-10 are essential cytokines in regulating bone remodeling.

While osteoclasts differentiate from HSCs, osteoblasts differentiate

from mesenchymal stem cells via osterix and Runx2 (runt-related

transcription factor-2). Runx2 is regulated by bone morphogenetic

proteins (BMPs) and Wnt proteins. Several growth factors and

hormones, including PGE2, bFGF, parathyroid hormone,

glucocorticoids, TGF-b, estrogen, and vitamin D3, also modulate

bone remodeling.
2.2 Wnt/b-catenin pathway

The Wnt (wingless-related integration site) signaling pathway

plays a crucial role in the growth and proliferation of skeletal tissues

and bone development. b-catenin is a transcriptional co-activator

that regulates the transcription of Runx2 and other transcriptional

factors. An inactive Wnt pathway results in the proteasomal

degradation of b-catenin, hence inhibiting transcription of the

Wnt target genes (44, 45). Inactive Wnt proteins are usually

bound to sFRP3 (secreted frizzled-related protein 3). In the active

state of Wnt signaling, the destruction complex degrades b-catenin,
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is inactivated, and cellular b-catenin levels rise. b-catenin then

translocates and binds to the TCF (T-cell factor), activating the

transcription of Wnt target genes. Canonical Wnt signaling is

directly involved in osteoblastogenesis from MSCs. The signaling

pathway maintains balance during bone remodeling by promoting

bone formation via osteoblasts. The dysregulation of several Wnt

signaling factors and their extended crosstalk with other signaling

pathways could lead to a diseased state.
2.3 NLRP-3 inflammasome and
Nrf2/HO-1 signaling

The relationship between NLRP-3 (NOD-, LRR- and pyrin

domain-containing protein 3) inflammasome and Nrf2 (nuclear

factor erythroid 2-related factor 2) signaling has been demonstrated

in the osteoarthritis (46). In this state, human synovial tissues

revealed a higher expression of Nrf2, HO-1 (heme oxygenase 1),

NLRP-3 inflammasome, and ASC, suggesting increased oxidative

stress. Nrf2 knock-down in rat chondrocytes showed an increased

expression of NLRP-3 inflammasome, suggesting its role in NLRP-3

activation caused by increased oxidative stress during the diseased

state (46). Hence, both Nrf2 and NLRP-3 could be therapeutic

targets for the treatment of osteoarthritis. Several studies suggest the

involvement of NLRP3 inflammasome in various bone ailments,

activating pro-inflammatory cytokines. Osteoarthritis ’s

pathogenesis involves abnormal activating proinflammatory

cytokines (47) (48), in which IL-1b primarily plays an important

role. While stimulating RANKL-osteoclast activation, IL-1b inhibits
osteoblast differentiation, resulting in increased bone resorption

and reduced bone formation. During this process, IL-1b modulates

NF-kB and MAPK (mitogen-activated protein kinases) pathways.

NLRP3 inflammasome is also involved in gasdermin D-associated

cell lysis and death & pyroptosis. Reactive oxygen species also

upregulate NLRP3-mediated pyroptosis.
2.4 TRPV1 pathway

Transient receptor potential vanilloid subtype 1 (TRPV1) is

majorly expressed in nerve fibers that involve the regulatory role of

cardiovascular, respiratory, and digestive systems and play an

essential role in specific diseases (49). Although capsaicin is a

known agonist of TRPV1, various other mediators such as

prostaglandin, nerve growth factor (NGF), substance P, physical

and chemical features such as acidic pH, osmotic pressure, redox

state, and noxious heat stimulation, all lead to activation of TRPV1

(50). Targeting the TRPV1 channel pathway to alleviate

osteoarthritis pain is effective based on the current data. Several

antagonists and agonists of TRPV1 are currently under various

phases of preclinical and clinical trials (51). In both primary mouse

chondrocytes and surgically induced-DMM (destabilization of

medial meniscus) mice OA model, single cell RNA sequencing

revealed that TRPV1 led to upregulation of selenoprotein

glutathione peroxidase 4 (GPX4) and showed protective effective

against ferroptosis of chondrocytes (52). Receptors of TRPV1 were
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detected in the synovium of osteoarthritic joints, following which an

antagonist of TRPV1 was administered locally. Blockage of TRPV1

led to significant inhibition of joint pain and proved to be a

promising therapeutic against osteoarthritis (53). Various agonists

of TRPV1, such as capsaicin, resiniferatoxin, allicin, gingerol, and

piperine, have been shown to interact and bind to TRPV1 (54, 55).

Several clinical studies have shown the effect of topical or intra-

articularly administered capsaicin in alleviating OA-related pain

(56, 57). An analog of capsaicin, pellitorine extracted from

Tetradium danielli is an antagonist of TRPV1 and can thus

inhibit pain (58). Intra-articular treatment with resiniferatoxin,

another agonist of TRPV1 led to reduced pain in the induced

osteoarthritis model (59).

Available data suggest modulators of the TRPV1 channel

pathway could be the target in ameliorating OA-related pain.

Thus, the Bioactives that interact with the receptor are potential

therapeutic targets.
3 Mechanisms of action of Bioactives
on osteoarthritis: gut-immune-
bone axis

Poor nutrition or nutritional deficiencies have a severe adverse

impact on the health of bones. Diet plays a pivotal role in the

pathogenesis of osteoarthritis, where obesity is a high-risk factor.

Dietary changes influence the gut microbiome, affect body weight,

and cause obesity (60). However, the interplay between diet, body

weight, obesity, and gut microbiota in influencing gastrointestinal,

metabolic effects, and immune modulation contributing to OA

pathophysiology is unclear. Various studies show a bidirectional

aspect where gut dysbiosis leads to obesity and vice versa, where

obesity results in gut dysbiosis (61–63). The gut consists of a highly

diverse composition of microorganisms that govern and modulate a

wide range of functions like digestion, metabolism, absorption of

nutrients, vitamin synthesis, signaling pathways, inhibiting the

growth of pathogenic bacteria, immunity and interaction with

sensory afferent fibers releasing neurotransmitters, forming a gut-

brain axis. The various roles the intestinal microbiome plays in

modulating the immune system and their modulation by bioactive

is not understood yet.

The gut microbiome is majorly involved in directly interacting

with the immune system based on diverse stimuli, generating an

immune response, activation of specific immune cells, production

of metabolites, acting as a barrier via tight junction proteins,

maintaining homeostasis of the microbial composition, and

recognizing commensal microbes of the intestine. Hence, the

seemingly simple gut microbiome has vast involvement in the

immune system at both innate and adaptive levels (64–66).

Dietary habits constitute a major causative for maintaining gut

homeostasis. The bioactive that are proven to have various health

benefits modulate the microflora composition and affect the

immune system in case of inflammatory disorders. With respect

to osteoarthritis, the innate immune system plays a crucial role in

inducing inflammatory responses during disease progression (67).
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The most commonly found microbial phyla include Firmicutes,

Actinobacteria, Proteobacteria, Bacteroidetes, Fusobacteriia, and

Verrucomicrobia, among which Bacteroidetes and Firmicutes

represent almost 90% of the microflora (68). However, variations

in the gut microbial composition are found in different parts of the

gastrointestinal tract, in addition to variations in age and

environmental factors. Among individuals, these variations arise

from BMI, diet, exercise, ethnicity, climate, and geographical

location changes. The ratio of Firmicutes to Bacteroides increases

during obesity and is a characteristic of gut dysbiosis (69, 70).

Increased abundance of Firmicutes during obesity leads to increased

production of short-chain fatty acids (SCFAs) and increased

concentration in the samples that contribute to reduced energy

expenditure (71), resulting in expanded body weight (72). Dysbiosis

in the gut changes the metabolic pathways of certain microbes,

leading to how lipids and carbohydrates are metabolized (73). High-

fat diet-induced obesity also has a risk of developing low-grade

inflammation (74, 75) that causes gut dysbiosis and disrupts the

homeostasis of intestinal permeability by altering the expression of

tight-junction proteins (76) leading to a leaky gut with increased

plasma levels (77) of lipopolysaccharide (LPS).

The immune system influences the gut composition and

develops tolerance towards non-pathogenic microbes from the

early stages. Gut microbiota affects the development and

maturation of various immune cells. Together, the immune

system and the gut microbiota also act as a barrier at the

intestinal lining against pathogenic microorganisms (78) (79)

(64). Various luminal factors like microbial metabolites (SCFAs,

tryptophan metabolites, succinate, vitamins, and lipid mediators),

dietary w-3 fatty acids, sphingolipid, and specific neuropeptides

play an active role in the innate immune system of the intestine

(80). In addition, the prevalence of the gut-immune-bone axis has

also been demonstrated by several studies (81–84). TLRs have been

a significant link between the gut microbiome and immune

responses generated by the immune system. Specific microbial

metabolites of C.sporogenes regulate intestinal permeability by

directly interacting with xenobiotic receptors via TLR4 signaling

(85). However, it has been reported that a high-fat diet leads to an

increase in pro-inflammatory cytokines, causes changes in

the gut microbial composition, increases the abundance of

Enterobacteriaceae, which enhances endotoxin production,

increases intestinal permeability, and induces TLR4 expression

(86). This is because TLR4 is a critical protein that regulates gut

permeability and is involved in acute and chronic inflammation (87,

88). Certain Prevotella species in the intestine (P. melaninogenica

and P. copri) are involved in inducing the production of a subset of

T helper cells (Th17) via their interaction with TLR2 (89). In

addition to TLR-4 and TLR-2, TLR-1 is also actively involved in

maintaining intestinal homeostasis and obstructs the translocation

of microbes, which otherwise happens during either defective TLR-

1 or an inflammatory state (90). Thus, abnormal TLR signaling

negatively impacts the gut, compromising permeability and

resulting in inflammation and dysbiosis. A schematic outline

(Figure 1) suggests an emerging mechanism that Bioactives could

play their roles in bone metabolism of osteoarthritis by gut-

bone axis.
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4 Bioactives and osteoarthritis:
metabolic and anti-
inflammatory functions

The Bioactives that include probiotics and prebiotics have

recently been examined extensively for their efficacies and

potential health benefits due to minimum side effects when

included in the diet of healthy adults. The primary focus of the

ongoing research is the gut microflora’s relationship to chronic

diseases. In general, probiotics are food such as yoghurt, curd or

supplements that contain live microbial strains such as

Lactobacillus, which can help to maintain healthy microflora in

the body. In contrast, prebiotics are foods rich in Bioactives,

including polysaccharides, fructooligosaccharide, polyphenols,

omega-3 fatty acids and other that typically serves foods for

endogenous gut microflora.
4.1 Dietary habit, gut microbial diversity
and osteoarthritis

It has been reported that gut dysbiosis worsens osteoarthritis

(91). A causal relationship has been established among microbial

taxa such as Methanobacteriaceae, Ruminiclostridium,

Desulfovibionales and osteoarthritis (92). Knee osteoarthritis

increases the abundance of microbes such as Peptococcus,

Propionibacterium, Intestimonas, Parvimonas, and Shimwella (93).

OA-related knee pain has been shown to correlate with the

abundance of Streptococcus and Clostridium positively and

reduced a- and b diversity (94) (95). A decrease in species of

Bifidobacteria and Faecalibacteria is also observed. However,

precise mechanisms that would increase the potential of gut

microbiome being targeted to maintain immune homeostasis and

prevent, delay, or treat inflammatory disorders like OA are required

to investigate further.

The gut microbiome varies among populations from diverse

geography, considering their subsistence and dietary patterns,

ethnicity, and genetic factors (96). The urban Chinese population

has comparatively less a and b-diversity and a decreased ratio of

archaea-to-bacteria compared to the rural population (97).

Methanobrevibacter smithii was abundant in rural populations,

correlating with other SCFA-producing bacteria like Prevotella

and Roseburia sp. Geography played a bigger role than ethnicity

in influencing gut microbial composition in China (98). In India,

across several regions and varied ethnic groups, the composition

was dominated by Bacteroidetes, with Prevotella involved in

carbohydrate metabolism being the most abundant (99, 100).

Dietary patterns were also seen to bring in variations in the

composition among different regions. Upon comparative analysis

of the gut microbial composition of Indians with people from the

United States, France, Germany, and Denmark, it was revealed that

Prevotella, Bifidobacterium, and Lactobacillus were more abundant

in Indians than people from these countries (100). Among the

Spanish, Firmicutes and Bacteroidetes were the most dominant

phyla, in which Faecalibacterium, Bacteroides, Alistipes,
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Oscillospiraceae, and Prevotella were prevalent at the genus level

(101). Age, BMI, and diet-dependent associations with several

human gut microbes were also noted. In Italy, variation in gut

microbial composition was evident among samples from different

geographical regions. Cyanobacteria and Nitrospirae were found in

all samples of two individually separate regions (102). Still, they

were absent in the other areas, proving the association between gut

microbial composition and geographical location. Humanized

gnotobiotic mice from various geographical locations (US, Fiji

Islands, and Guatemala) had variations in their susceptibility to

enteric infection caused by Citrobacterium rodentum (103). This

establishes that geographic differences have a role in influencing

health status by modulating gut variations. So far, studies have

shown that Firmicutes and Bacteroidetes form the most dominant

phyla, irrespective of geographical differences. However, a latitude-

based correlation has been noted in affecting the Firmicutes-to-

Bacteroidetes ratio. Europeans were abundant in Firmicutes, which

decreased in the American, African, and Asian populations. On the

contrary, Bacteroidetes were dominant in African and American

and drastically reduced in European (104). Upon comparative

analysis of the gut microbial composition among the obese
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population of France, French Polynesia, Amazonian French

Guiana, and Saudi Arabia, it was revealed that the gut

microbiome of obese Amazonians varied drastically compared to

other populations because of different cultural and dietary habits

(105). Consuming food rich in fiber, starch, and polysaccharides

from plants led to increased microbial diversity in Polynesians and

Amazonians compared to French and Saudi obese populations.

Spirochaetes and specific Lactobacillus sp abundant in Amazonians

were absent in other obese populations.
4.2 Polysaccharides, fructooligosaccharide
and osteoarthritis

Since polysaccharides resist digestion, they are subjected to gut

microbial fermentation. The beneficial effects of bioactive

polysaccharides depend on their fermentability by gut microbiota,

water-holding capacity, bile acid interaction, and other

physicochemical properties. These bioactive slows down gastric

emptying, acidosis, improving bowel function by modulating the

gut microbiota structurally and functionally and thus protecting the
FIGURE 1

Mechanism of bioactives actions in modulating the bone metabolism of osteoarthritis by gut-immune-bone axis. Various bioactive compounds
undergo fermentation in the host gut by intestinal microbiota, thereby regulating microbial diversity and generating metabolites that majorly
modulate the immune system, among other significant functions. They are involved in lipid metabolism, influencing the levels of triglycerides and
low-density lipoprotein. Gut metabolites also lead to differentiation and activation of immune cells to strengthen the intestinal barrier and maintain
gut homeostasis. These mechanisms act at the system level, reducing inflammation and affecting bone remodelling to balance osteoclastogenesis
(bone resorption) and osteoblastogenesis (bone formation). FOS, Fructooligosaccharide; SCFAs, Short chain fatty acids; TMA, Trimethylamine; TG,
Triglyceride; LDL, Low density lipoprotein; TLR, Toll-like receptor; Th1, Helper T lymphocytes type 1; Treg, Regulatory T lymphocytes.
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immune system. Bioactive polysaccharides reshape intestinal

microbial activity through bacterial fermentation. A healthy

human gut microbiome abundantly expresses carbohydrate-active

enzymes (CAZymes) essential in metabolizing specific complex

polysaccharides like dietary fiber (106). The dietary shifts in

infant from milk to solid food usually change the CAZymes

(107). Varied dietary habits across geography and lifestyle

contribute to variations in CAZymes. An Italian cohort compared

the microflora of healthy and obese type 2 diabetes patients and

found that healthy subjects who consumed a Mediterranean diet

had more abundance of CAZymes-producing bacteria like F.

prausntiznii and E. rectale. In contrast, the obese subjects

suffering from T2D showed an abundance of R. bromii and S.

variabile that would result in dysregulation of the gut (108). Adding

dietary fiber or complex polysaccharides into the diet promotes the

abundance of bacteria that can ferment it and use it as an energy

source while generating various metabolites that prove beneficial for

the hosts in terms of reducing inflammation via gut modulation.

However, a refined diet can make these microbes redundant and

alter the microbiome (109). Supplementation of dietary fiber in

healthy adults increased the abundance of Bacteroidetes, thereby

changing the ratio of Bacteroidetes: Firmicutes (110). A multicenter

cohort suggests that intake of the recommended daily dietary fiber

was associated with a reduced risk of knee pain over time (111). The

prospective US cohorts over four and nine years showed that dietary

fiber reduced the risk of developing symptomatic but not

radiographic osteoarthritis (112). However, much work is

required to emphasize how dietary fiber can reduce the risk of

symptomatic osteoarthritis (113).

Supplementation with fructooligosaccharide (FOS) purportedly

improves the concentration of Bifidobacteria and increases the

function of dendritic cells (114). FOS supplementation in colitis-

induced mice led to the manipulation of intestinal flora, reduced the

abundance of Mucispirillum, downregulated expression of pro-

inflammatory cytokines (TNF-a and IL-6) and upregulated IL-10

expression (115). FOS intake improved immune responses by

ameliorating the hamster’s HFD-induced inflammation and lipid

profile (116). FOS supplementation affected Treg and Th17 cells’

homeostasis using tryptophan metabolites and modulating the gut

microbial composition (117). The in vitro fermentation of chicory

(FOS) and native inulin utilizing pooled fecal inocula of infants

exhibited reduced pro-inflammatory cytokines produced by

immature dendritic cells via increased synthesis of succinate

and lactate (118). A combined prebiotic and probiotic

(Bacillus coagulans) supplementation in mice treated with

cyclophosphamide showed increased expression of anti-

inflammatory cytokines such as IFN-g and IL-4 where the

abundance of several beneficial microbes such as Enterococcus,

Bacteroides, Ruminococcus, Oscillospira, and Anaerotruncus was

found to increase (119). Prebiotic fiber like FOS showed an

increased abundance of B. pseudolongum, a Bifidobacterium that

is ablated during obesity, while reducing the number of microbes

from Peptococcaceae family and other species associated with

obesity, thereby reestablishing the microbiome associated with a

lean gut (120). In addition, supplementation with oligofructose in

obese mice with surgically-induced osteoarthritis led to reduced
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synovial inflammation, reduced mineralization of the meniscus, and

downregulated chondrocyte hypertrophy (120).

Prebiotic supplementation in the form of short-chain

galactooligosaccharides, long-chain FOS, and milk oligosaccharide

2’-fucosyllactose at early life in mice improved their immune

response towards vaccine by generating specific antibodies,

promoted the production of cytokines and variation in the

relative abundance of various microbial phyla. Prebiotics led

to an increase in the quantity of Actinobacteria and a

decrease in Proteobacteria and Firmicutes (121). A specific

prebiotic blend (mixture of anthocyanins, inulin, FOS, and

galactooligosaccharides) was found to reduce pro-inflammatory

cytokines and upregulated the expression of tight junction protein

in vitro and in vivo models of inflammatory bowel disease (122).

Prebiotic blend increased the relative abundance of specific

genera such as Prevotella, Intestimonas, Butyricicoccus,

Barnesiella, and Ochrobactrum. Supplementation of prebiotics

(galactooligosaccharides and fructooligosaccharides) and

postbiotics in healthy suckling rats resulted in specific changes in

gut microflora composition and immune responses. Prebiotics led

to variation in the composition of an increased abundance of

Peptostreptococcaceae, Anaerotruncus, and Romboutsia, reduction

in Akkermansia and Vibrionimona, altered the proportion of

SCFAs and modulated the immunoglobulin profile (123).

However, postbiotic supplementation alone and in combination

with prebiotics increased the expression of Toll-like receptors such

as TLR3, TLR4, TLR5, TLR7, and TLR9, indicating their role in

generating an immune response.

The comprehensive systematic review suggests the benefit of

antioxidant supplementation to reduce disease-related symptoms in

knee osteoarthritis patients (124). Quercetin, an antioxidant used in

the treatment of osteoarthritis, influenced rat metabolome and gut

microbial composition by increasing Lactobacillus species and levels

of SCFAs (125). The presence of Peptostreptococcaceae and

Desulfovibrio, both of which hurt the intestine, and the absence of

lactic acid-producing bacteria have been shown in rat models of

osteoarthritis (126). Orally supplemented butyrate and

Lactobacillus acidophillus (LA-1) ameliorated osteoarthritis in rats

by downregulating inflammatory cytokines and improved

autophagy by reducing necroptosis factors (126). In another

study, LA-1 alleviated cartilage degradation and pain in the

monoiodoacetate-induced osteoarthritis (127). A similar probiotic

supplementation downregulated enzymes that degrade cartilage,

inflammatory cytokines, and reduced expression of markers

associated with pain in mice (128). The probiotic supplemented

with Lactobacillus casei strain Shirota (LcS) showed improved

WOMAC and VAS scores and significantly lowered C-reactive

protein levels in knee osteoarthritis patients (129).
4.3 Polyphenols and osteoarthritis

Curcumin, one of the most researched nutraceuticals, has

antioxidant and anti-inflammatory properties that modulate

several pathways, including NF-kB, Wnt signaling, Nrf2 signaling,

NOTCH, mTOR, and JAK/STAT (130). The role in alleviating
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osteoarthritis and protecting bone health due to its anti-

inflammatory properties has been highlighted recently. The

chondroprotective effects of curcumin alleviated apoptosis in

chondrocytes upon IL-1b stimulation (131). Stimulating with IL-

1b also caused increased p65 promoter activity of NF-kB, which
curcumin reversed. In THP-1 cells treated with LPS and ATP,

curcumin inhibited the expression of TNF-a and IL-1b in addition

to downregulation of cleaved-caspase-1, thereby inhibiting NLRP3

activation (132). The increased stability and bioavailability of

curcumin nanoformulation showed a protective effect on the

articular cartilage in the OA model, which was visualized in the

histological examination (133). The nanoformulation enhanced

matrix staining and increased cellularity compared to native

curcumin. Curcumin and nanocurcumin downregulate pro-

inflammatory cytokines IL-1b, TNF-a. In the model, topically

administered nanocurcumin slowed the progression of

osteoarthritis, downregulated pro-inflammatory mediators, and

showed chondroprotective effects and improved locomotor

function (133). Oral curcumin was also effective in slowing the

progression of osteoarthritis; however, it could not significantly

reduce OA-related pain as compared to the nanoformulation (133).

A clinical trial with curcumin nanomicelles significantly

ameliorated osteoarthritis symptoms in knee patients over six

weeks, which was analyzed through a questionnaire (134).

Curcumin primed onto adipose-derived mesenchymal stem cells-

derived small extracellular vesicle exhibited improved efficacy and

chondro-protective effects against osteoarthritis by inhibiting

oxidative stress and subsequent apoptosis of chondrocytes (135).

In the anterior cruciate ligament transection surgery (ACLT)

induced osteoarthritis mice, histological examination and

oxidative biomarker assays confirmed reduced apoptosis of

chondrocytes, thus showing protective effects on the cartilage

when compared to only small extracellular vesicles and only

curcumin in vivo.

The mechanism of bioactive curcumin in modulating

osteoarthritis pathophysiology is elusive. Proinflammatory

cytokines are involved in bone and joint-related diseases by

inducing bone resorption and destroying cartilage (136). These

cytokines are upregulated upon activation of NLRP3 inflammasome

via PAMPs (pathogen-associated molecular patterns), DAMPs

(damage-associated molecular patterns), and other signal

molecules. Initially, NF-kB signaling is activated by toll-like

receptors (TLR) upon recognition of PAMPs/DAMPs. This is

called inflammasome priming and upregulates the expression of

NLRP-3, pro-IL-1b, and pro-IL-18 (137). Post this, NLRP-3 forms

NLRP-3 inflammasome, pro-caspase 1, and ASC. Pro-caspase 1

subsequently changes into caspase-1, which cleaves pro-IL-1b and

pro-IL-18 into their active forms, such as IL-1b and IL-18. NLRP-3

inflammasome and NLRP-1 inflammasome induced pyroptosis in

human primary fibroblast-like synoviocytes (FLS) collected from

knee osteoarthritis patients under the stimulation of LPS/ATP

(138). FLS cells, when stimulated with LPS and ATP, resulted in

pyroptosis, which was, however, reversed in the presence of NLRP-1

and NLRP-3 siRNAs. The curcumin-ameliorating effects in patients

with knee osteoarthritis symptoms could mediated by modulating

NLRP3 inflammasome and its constituents that can effectively
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maintain the balance between osteoclastogenesis and

osteoblastogenesis, reducing NLRP3-mediated inflammation

oxidative stress and possibly improving osteoarthritis

pathophysiology as shown in Figure 2.

Curcumin supplementation in mice showed neuroprotective

effects by modulating the gut microbiota via the gut-brain axis

(139). Curcumin was found to restore the profile of short-chain

fatty acids and alleviated the expression of tight junction proteins of

the intestine in comparison to diseased samples. Curcumin

modulates the organization of tight junctions and downregulates

LPS-mediated IL-1b expression, thus improving the intestinal

barrier function (140). Supplementation with curcumin, Emblica,

and Cassia extract in HFD fed-obese mice showed decreased

intestinal inflammation and an improvement in the integrity of

the gut epithelial barrier (141). Further, curcumin simultaneously

reduced the plasma and mRNA levels of IL-1b and TNF-a
downregulated the expression of MyD88, NF-kB, and TLR4 while

upregulating major tight junction proteins such occludin and

zonula occluden-1 in HFD-induced steatosis mice (142). Thus,

there is strong evidence that dietary intervention with curcumin

can improve the gut barrier function and potentially ameliorate

inflammatory diseases.

Linking gut microbial composition, DHA-acylated curcumin

diesters affected the abundance of microbes that metabolize

trimethylamine and lipopolysaccharide. Thus, curcumin esters

combined with DHA have significantly reduced renal tubal injury

(143). Curcumin’s presence attenuated LPS-induced intestinal

imbalance by reducing pro-inflammatory cytokine levels and

impacting gut microbial diversity, leading to an increased

abundance of Enterococcus and Butyricicoccus (144). Despite low

absorption and low bioavailability, curcumin improves the function

of the gut epithelial barrier via various mechanisms, including

absorption into intestinal epithelial cells, binding to intercellular

vitamin D receptor, direct interaction with IL-2, downregulation of

sterol transporter NPC1L1, thus reducing intestinal cholesterol

absorption (145). When combined with piperine, curcumin has

also been shown to act on the mTORC inhibitor (TSC2), thereby

downregulating mTORC signaling in human intestinal cells (146).

Additionally, it has been shown that gut bacteria like Blautia sp. are

involved in metabolizing curcuminoids into active metabolites such

a s d emy th y l c u r c um in , b i s d eme t h y l c u r c um in , a nd

demethyldemethoxycurcumin, all of which are promising synthetic

analogs of curcumin that potentially show systemic and localized

effects (147). Curcumin, thus, has the potential to modulate the

epithelial barrier of the intestine (145). Table 1 represents data from

various clinical trials conducted to test the efficacy of curcumin

against osteoarthritis. In addition, a meta-analysis has revealed that

both high- and low-dose curcuminoids significantly decrease pain

relief (172) and promise an alternative or complementary agent for

the management of osteoarthritis (173).

Inflammation due to dietary habits like HFD consumption is a

significant causative for intestinal dysbiosis. The bioactive

polyphenols have the potential to rescue gut dysbiosis and

maintain intestinal homeostasis. Resveratrol has demonstrated

protective effects on systemic and localized inflammation by

modulating the gut in several HFD-induced metabolic studies.
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Intervention with resveratrol in healthy rats led to changes in the

gut microbiota composition like enrichment of Parabacteroides,

Bacteroides, Blautia, Lachnoclostridium, Ruminiclostridium, and

Lachnospiraceae (174). Further, transplanting these microbiomes

to mice fed with HFD increased insulin sensitivity, improved gut

barrier function, reduced weight gain, decreased inflammation, and

improved lipid metabolism (174). Resveratrol reduced systemic

inflammation and fat accumulation in mice fed with HFD. A

correlation was observed upon fecal microbiota transplantation in

mice from HFD-fed mice who intervened with resveratrol, thus

proving that resveratrol affects the gut microflora composition

(175) . An increased abundance of Ruminococcaceae ,

Akkermansia, and Lachnospiraceae and reduced Desulfovibriwere

mitigated HFD-induced hepatic fat accumulation, inflammation,

weight gain, and gut dysbiosis (176). A combination of

resveratrol and quercetin in HFD-fed rats led to reduced ratio of
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Firmicutes to Bacteroidetes, enriched with Christensenellaceae,

Ruminococcaceae, Bacteriodales, Akkermansia and a decreased

abundance with Bilophila, Lachnoclostridium, Coriobacteriaceae,

Acidaminococcaceae and Desulfovibrionaceae (177).

Similar to curcumin, metabolites of resveratrol such as lunularin

and dihydroresveratrol are derived from the gut microbiota and

distributed abundantly in the GI tract and tissues as compared to

unmetabolized resveratrol and hence show better activity than native

resveratrol (178). Resveratrol exhibited cytoprotective, antioxidant,

and anti-inflammatory properties when exposed to the gut

microbiota-derived uremic toxin by downregulating Nrf2 and

upregulating NF-kB expression in RAW 264.7 cells (179). Trans-

resveratrol has been shown to upregulate mRNA expression of an

occluding gene that expresses a tight junction protein and other

inflammatory markers like TLR2, TLR4, and IL-18 (180). An

increased abundance of SCFA-producing bacteria - Dorea and
FIGURE 2

The roles of bioactive curcumin and modulation of osteoarthritis pathophysiology. Curcumin acts as a signalling molecule via PAMPs (pathogen-
associated molecular patterns) and DAMPs (damage-associated molecular patterns) recognition that follows the activation of NLRP3 inflammasome,
reduction of NLRP3-mediated inflammation, oxidative stress, possibly restoring the balance between osteoclastogenesis and osteoblastogenesis.
Pathophysiological changes during knee osteoarthritis involve damaged cartilage tissue and inflamed synovium, which trigger various inflammatory
pathways via PAMP/DAMP. The activated TLRs induce NF-kB signalling, leading to the upregulation of various genes related to immune responses.
NF-kB complex also activates cytokines (IL-18 and IL-1b) and NLRP3. Activation of NLRP3 results in the formation of an inflammasome complex and
cleaves pro-caspase 1 to caspase 1. Similarly, NLRC4 and AIM2 inflammasomes also form inflammasome complexes and activate caspase 1. Caspase
1 recognizes and cleaves Gasdermin D, producing transmembrane pore-forming channels that release pro-inflammatory cytokines. In addition, pore
formation results in sodium and water inflow into cells. These factors cause programmed cell death (pyroptosis), further amplifying inflammation and
aggravating knee osteoarthritis. ROS, Reactive oxygen species; LPS, Lipopolysaccharide; PAMP, Pathogen-associated molecular pattern; DAMP,
Damage-associated molecular pattern; TLR, Toll-Like Receptor; NF-kB, Nuclear factor kappa B; IkB, I-kappa-B; IKK, Inhibitor of IkB kinase; MMP13,
Matrix metalloproteinase 13; PGE2, Prostaglandin E2; COX-2, Cyclooxygenase 2; IL-1b, Interleukin-1b; IL-18, Interleukin 18; H2O, Water; Na+:
Sodium; NLRP3, Nucleotide-binding domain, leucine-rich-containing (NLR) family, pyrin domain containing 3; ASC, Apoptosis-associated speck-like
protein containing a caspase-recruitment domain; NLRC4, NLR family caspase activation and recruitment domain-containing protein 4; AIM2,
Absent in melanoma 2.
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TABLE 1 Clinical interventions with various bioactive supplemented in knee osteoarthritis patient.

Bioactives supplemented
Sample size,
duration

& measure
Key outcome References

Lactobacillus casei Shirota N=537, 6 mo
-VAS score
-WOMAC score
-Serum parameters

Probiotic supplementation significantly improved VAS
and WOMAC scores, reduced serum hs-CRP levels

(129)

Oral Vit D3 (50,000 IU/once/mo) N=413, 2 yr
-WOMAC score

No significant change in volume of tibial cartilage and
WOMAC scores

(148)

Fish oil
High dose (4.5g omega-3 @ 15ml/d
Low dose (0.45g omega-3) @ 15ml/d

N=202, 2 yr
-WOMAC score

Significant improvement in the low-dose group in
WOMAC scores compared to high-dose

(8)

Resveratrol (500mg/d)
plus, Meloxicam (15mg/d)

N=110, 3 mo
-KOOS score
-WOMAC score
-Serum pro-
inflammatory
markers

Nonsignificant and weak correlation between serum pro-
inflammatory markers and clinical scores i.e., KOOS
and WOMAC

(149)
(150)

Verbascox® (Herbal extract)
800mg/d

N=100, 2 wk
-Serum substance
P markers

Improved functional capacity, reduced pain, and serum
substance P levels, and equally safe as celecoxib (NSAID)

(151)

Nigella sativa oil
(2.5ml/thrice/d)

N=116, 1 mo
-WOMAC score
-VAS score

Significant reduction in VAS and WOMAC scores (152)

Ginger powder
(500mg/d)

N=120, 3 mo
-Serum markers

Reduced levels of IL-1b and TNF-a in serum (153)

ParActin®

Andrographis paniculata wall
(300mg/d and 600mg/d)

N=103,12 wk
-WOMAC score
-SF-36
-FACIT score

Significant reduction pain, stiffness and fatigue assessed by
WOMAC, SF-36 and FACIT scores.

(154)

Burdock root tea
(2g/150ml/thrice/d)

N=36, 6 wk
-Serum markers

- Significant decrease in serum IL-6, hs-CRP
- improved oxidative stress and inflammatory status

(155)

Blueberry
Freeze-dried powder (40g/d)

N=63, 4 mo
-WOMAC score
-GAITRite®

-Serum markers

- Reduced stiffness and pain, improved gait performance
and quality of life
-Downregulated the expression of MCP-1

(156)

Camellia sinensis (green tea) N=50, 4 wk
-WOMAC Score
-VAS score

Improved WOMAC and VAS pain scores (157)

Marine bioactive (LD-1227) N=60, 18 wk
-VAS score
-WOMAC score
-KOOS score
-Laquesne Index

Improved VAS, WOMAC, KOOS and Lequesne Index
scores compared to control

(158)

Arthem®

(Artemisia annua extract)
(150mg/twice/d)

N=34, 6 mo
-WOMAC score

Significant improvement in WOAMC scores (159)

Arthem®

Low dose -150mg/twice/d
High dose - 300mg/d

N=42, 12 wk
-VAS score
-WOMAC score

WOMAC and VAS scores improved significantly in low
dose group

(160)

Chicory root extract
(600, 1200 and 1800 mg/d)

N=40, 4 wk
-WOMAC

Improvement in stiffness and pain analyzed by WOMAC (161)

Pomegranate Juice N=38, 6 wk
-WOMAC score
-Serum markers

Reduced stiffness, decreased serum matrix
metalloproteinases and improved antioxidant status

(162)

(Continued)
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Blautia sp. and a reduction in disease-causing Desulfovibrionaceae sp.

has been observed upon resveratrol supplementation in rats fed with

an HFD (181). Thus, resveratrol’s anti-oxidative and anti-

inflammatory potential is modulated via gut microbiome, as

evidenced by several studies.

Various evidences suggest the established use of another

polyphenol, capsaicin (CAP), as a phytochemical analgesic that

works by binding with TRPV1, a nociceptive fibre (182–185). The

vanillyl moiety of capsaicin is majorly responsible for its bioactivity

and is used widely for the treatment of chronic musculoskeletal and

neuropathic pain, chronic migraines and in treating functional

dyspepsia (186, 187). Capsaicin also shows an anti-inflammatory

effect by down-regulating LPS-induced expression of COX-2 and NF-

kB in RAW 264.7 macrophages (188). Capsaicin has similarly been

found to suppress the LPS-induced expression of pro-inflammatory

cytokines TNF-a, IL-1b, and IL-6 in THP-1 macrophages (189).

Capsaicin significantly reduced TLR4 and ICAM-1 expression in

primary Schwann cells (190). In muscle precursor myoblast cells,

capsaicin could attenuate LPS-induced inflammation by

downregulating the expression of TNF-a, Calpain-1, and Caspase-3

(191). A nanoemulsion of capsaicin with olive oil proved to be a more

efficient anti-inflammatory agent and analgesic upon topical

application in rats and rabbits (192).
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Dietary capsaicin has also been shown to alleviate metabolic

dysregulation in diabetic obese mice, thus exhibiting anti-obesity

properties (193). Several mechanisms in this regard have been

explored (194). Capsaicin has satiety-inducing properties and

suppresses appetite (195). It also decreases the accumulation of

lipids by enhancing their metabolism (196, 197). Capsaicin also

exhibits properties of improving glucose homeostasis and insulin

sensitivity. Administration of dietary capsaicin in db/db mice

(diabetic) led to increased glycogen synthesis and reduced

gluconeogenesis in addition to increasing the pool size of bile acid

by suppressing FGF15 and upregulating expression of glucagon-like

peptide (GLP-1) (198, 199).

In addition, gut microbial changes have also been associated

with the anti-obesity effects of capsaicin. A disruption in glucose

homeostasis is linked to alterations in the gut microbiome. Dietary

capsaicin increased the ratio of Firmicutes/Bacteroides and an

increased abundance of Roseburia in obese diabetic ob/ob mice

(200). Capsaicin led to an increased abundance of Odoribacter,

Coprococcus, Prevotella, Allobaculum, Muribaculaceae, Bacteroides,

and Akkermansia, while reducing the abundance of Escherichia,

Sutterella,Helicobacter, Proteobacteria and Desulfovibrio (201, 202).

This increase in SCFA-producing species in HFD mice had an anti-

obesity effect by increasing propionate and acetate concentrations.
TABLE 1 Continued

Bioactives supplemented
Sample size,
duration

& measure
Key outcome References

Boswellia serrata extract (Boswellin®) N=48, 4 mo
-Serum markers

Reduction in bone spurs, improved knee gap, reduced
CRP level

(163)

Fennel seed extract
(200mg/four times/d)

N=66, 2 wk
-WOMAC score
-VAS score

Reduced pain & stiffness, WOMAC and VAS score (164)

Bromelain (500mg/d/16 wk) N=40, 16 wk
-WOMAC score
-SF-36

Reduced SF-36 and WOMAC scores, however not
significant when compared to diclofenac (NSAID)

(165)

Each capsule contains hemp seed oil (413mg), b-caryophyllene
(35 mg), myrcene (15 mg), ginger extract in gingerols (66 mg)
@ 2 capsules/d

N=38, 45 d
-ODI score
-SF-12 score

Various measures like Oswestry Disability Index (ODI)
and Short Form 12 (SF-12) showed improvement in joint
function and pain

(166)

Pycnogenol® (Pine bark extract)
100mg/twice/d

N=33, 3 wk
-Serum markers
-Cartilage and
synovial fluid

- Downregulated expression of cartilage degradation gene
markers and IL-1b, MMP-13 and MMP-3.
- Reduced serum concentration of ADAMTS-5

(167)

Garlic (1000mg/capsule/d) N=76, 12 wk
-WOMAC score

-Stiffness reduced significantly compared to placebo
-WOMAC scores were insignificant

(168)

Garlic (1000mg/twice/d) N=80, 12 wk
-VAS score
-Serum markers

-VAS scores reduced significantly
- Serum resistin and pain scores decreased

(169)

Strawberry beverage (50g/d) N=17, 26 wk
- ICOAP score

-Reduced intermittent and constant osteoarthritis
pain (ICOAP)

(170)

Strawberry supplement (50g/d) N=17, 26 wk
-Serum markers

-Decreased serum TNF-a in addition to reduced pain (171)
mo, Month; wk, Week; d, Day; (VAS), Visual Analog Scale; (WOMAC), Western Ontario and McMaster Universities Arthritis Index; (AUSCAN), Australian/Canadian Osteoarthritis Hand
Index; (OMERACT), Outcome Measures in Rheumatology; (OARSI), Osteoarthritis Research Society International; (KOOS), Knee Injury and Osteoarthritis Outcome Score; (ODI), Oswestry
Disability Index and Short Form 12 (SF-12); Short Form 36 (SF-36); (FACIT), Functional Assessment of Chronic Illness Therapy; (ICOAP), Intermittent and Constant Osteoarthritis Pain; (IL),
Interleukin; (TNF-a), Tumor Necrosis Factor-a; (CRP), C-Reactive Protein; (MCP), Monocyte Chemoattractant Protein; (NSAID), Non-Steroidal Anti-inflammatory Drug; (MMP), Matrix
metalloproteinases; (ADAMTS), A Disintegrin and Metalloproteinase with Thrombospondin motifs.
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A combination of dietary fiber and capsaicin in HFD-rats increased

gut-microbial diversity, reduced the abundance of Desulfovibrio,

and increased Akkermansia and Allobaculum species (197). This

evidence led us to believe that capsaicin might also function in a

TRPV1-independent way by modulating the gut.

The ability of capsaicin to further increase gut microbial

diversity has also been elucidated. Microbial community was

maintained in vitro and supplemented with capsaicin for two

weeks. Analysis of samples revealed a distinguished increase in

microbial diversity and a modulation in the abundance of primary

short-chain fatty acids (SCFAs) (203). Dietary intervention with

capsaicin led to lowered plasma Ghrelin levels and increased levels

of gastric inhibitory peptide (GIP) and GLP-1. It also led to an

increased abundance of Faecalibacterium while increasing the ratio

of Firmicutes-to-Bacteroide (204). Additionally, the administration

of capsaicin also led to a dose-dependent increase in the production

of SCFAs by regulating the abundance of Lactobacillus,

Butryricimonas, Bifidobacterium, and Faecalibacterium (205).

Faecalibacterium, Lactobacillus, and Roseburia are essential

species of the gut microbial community, all of which have been

shown to increase in abundance upon administration of dietary

capsaicin, proving their role in positively modulating the gut

microbiota (206).

Randomized controlled trials (RCT) studied the efficacy of

dietary supplementation in improving bone and skeletal health. A

recent systematic review of ten studies confirmed that turmeric or

curcumin extract improved pain and function from baseline for

individuals with knee osteoarthritis (38). Other Bioactives also

demonstrated beneficial effects in improving bone disorders. For

example, a combination of protein fortified with micronutrients was

given as a nutraceutical, and markers related to bone turnover and

bone metabolism were studied in premenopausal women. A decline

in the expression of bone resorptive markers and increased vitamin

B levels showed a promising outcome for the formulated

supplement against skeletal health (207). The healthy post-

menopausal women supplemented with pomegranate and grape

seed juice showed downregulated expression of genes related to

bone resorption and osteoclast differentiation and upregulated bone

formation-related genes in ex-vivo microarray analysis (9). These

data reiterate nutraceuticals’ ability to alter epigenetics through

nutrient-gene interaction in bone and skeletal homeostasis. Table 2

represents clinical trials of various bioactive against osteoarthritis.
4.4 Vitamin D and omega-3 fatty acids

The vitamin D is synthesized beneath the skin upon exposure to

ultraviolet-B radiation from the sunlight. This biologically inactive

form of vitamin D undergoes a series of reactions, including

hydroxylation in the liver and kidney, to convert to an active

form such as calcitriol (1,25-dihydroxy vitamin D). Calcitriol

increases calcium reabsorption after being filtered by the kidneys.

It mobilizes calcium in the bones and maintains calcium and

phosphorous homeostasis in bones. Vitamin D deficiency leads to

the disease rickets in children due to inadequate bone

mineralization, while osteomalacia is reported in adults under
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similar conditions. Vitamin D deficiency has been associated with

elevated inflammation, and long-term vitamin D insufficiency

increases the risk of osteoporosis.

The bioactive vitamin D3 is the predominant form found in

food. However, the roles of bioactive vitamin D on intestinal

homeostasis and its impact on bone metabolism are unknown.

Vitamin D and its receptor signaling play an essential role in

maintaining intestinal homeostasis and the healthy gut

microbiota by modulating effector T cells (Th1 and Th17) and

regulatory T cells (220–222). Since vitamin D plays such a crucial

role in maintaining gut homeostasis, it is evident that any deficiency

will result in altered microbial composition. Several studies recently

reported strong links between vitamin D synthesis, exposure to

sunlight, and gut microbes, including mice, zebrafish, and humans

(223, 224). Supplementation with vitamin D increased Firmicutes,

Bacteroidetes, and Actinobacteria abundance at the phyla level and

Faecalibacterium, Ruminococcaceae, Coprococcus, and Akkermansia

at the genus level. Firmicutes are directly associated with vitamin D

serum levels (225, 226). In rats, vitamin D deficiency impaired

glucose tolerance and increased Desulfovibrio, Peptococcus,

Rosebur ia , Lachnopr i raceae , Lachnoc los t r id ium , and

Ruminiclostridium. Blautia linked to 2-picolinic acid was

decreased, leading to a decrease in the metabolite that is crucial

in generating an immunological response (227).

An association between serum vitamin D, ultraviolet rays (UV-

B), and the gut microbiome was studied in the Canadian

population. Exposure to narrow band (NB)-UVB among those

who did not take vitamin D supplementation led to an aberrant

increase in serum vitamin D levels in addition to increasing a- and
b-diversity of the gut microbiome. This increase in diversity was

similar to the microbial composition of those who took vitamin D

supplements, among whom the NB-UVB exposure did not create a

difference (228). The gut microbial composition in a semi-nomadic

hunter-gatherer (Yanomami) showed similar to those with NB-

UVB exposure in the previous study, thus establishing the role of

sunlight and vitamin D levels in modulating the gut microbiota

(229, 230). The association of dietary omega-3 fatty acids with

vitamin D, as proven by several studies (231, 232), establishes the

importance of omega-3 and other vital nutrients that directly or

indirectly cause variation in the gut microbial composition and

thereby affect the progression of inflammatory and musculoskeletal

disorders. This aligns with the assumption that nutrition and diet

are the significant causatives that trigger various diseases via

intestinal dysbiosis.

The essential roles of long-chain fatty acids were evidenced first

from the abnormal calcification due to essential fatty acid deficiency

(233), suggesting the critical involvement of lipid mediators in bone

metabolism. During acute inflammation, the immune cells are

regulated by specialized lipid mediators such as lipoxins (derived

from arachidonic acid, ARA), resolvins, maresins, and protectins

(derived from eicosapentaenoic acid, EPA, and docosahexaenoic

acid, DHA), those are collectively known as SPMs (specialized pro-

resolving mediators), drive resolution of inflammation, remove

inflammatory lesions and promotes apoptotic cell clearance

through lymphatics (234). Resolvin E1 (RvE1), derived from EPA

(omega-3), and other lipid mediators play a role in inflammation-
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TABLE 2 Therapeutic effects of curcumin in managing knee osteoarthritis: a collection of clinical interventions.

Bioactives
Sample size, dura-
tion & measure

Key outcome References

Curcumin extract (Curcugen®) (500mg/
twice/d)

N=101, 8 wk
- KOOS
- (JOA)
-Performance based testing

-Reduced KOOS and JOA score
-Improvement in performance-based testing

(208)

Curcumin (500mg/thrice/d) N=139, 4 wk
-KOOS
-PGA score

-Efficacy of curcumin was similar to diclofenac
-Exhibited better tolerance to side effects of diclofenac

(209)

Curcuminoids (CuraMed®) @ 500mg/
thrice/d
Curcuminoids and Boswellic acid
(Curamin®) @ 500mg/thrice/d

N=201, 12 wk
-WOMAC score
-Physical Performance

-CuraMed improved physical performance
-Curamin showed significant increase in both physical performance
and WOMAC score

(210)

Curcumin (300mg) + Gingerols (7.5mg) +
Piperine (3.75mg)
Mixture twice/d)

N=60, 2 wk
-Serum markers (PGE2)

Similar efficacy compared to Naproxen (NSAID) in reducing
prostaglandin E2 (PGE2) in patients

(211)

CartiJoint Forte
(Glucosamine hydrochloride, Chondroitin
sulfate and Bio-curcumin)
(twice/d)

N=53, 12 wk
-VAS Score
-Lequesne Index score
-Physical therapy

Improved VAS score and Lequesne Index Scores when supplemented
in addition to physical therapy

(212)

Curcumin extract (bio-optimized) N=150, 3 mo
- PGADA
-KOOS Score
- Serum parameters

Extract showed decrease in PGADA, KOOS score and reduction in
serum levels of sColl2-1.

(213)

Curcumin (100mg/twice/d) N=107,
-VAS score
-WOMAC score
-Range of Motion (ROM)
- LKSS
-Serum markers

Curcumin improved inflammation and joint mobility and reduced
side effects compared to Ibuprofen (NSAID)

(214)

Curcumin
(Sinacurcumin®)
(80mg/d)

N=30, 3 mo
-VAS score
-Serum parameters

Decrease in VAS scores, CRP levels, and immunomodulatory effects (215)

Curcuminoid capsules (500mg/thrice/d)
Co-administered with Piperine (15mg/d)

N=40, 6 wk
-Serum parameters

Supplementation mitigated systemic oxidative stress measured by
SOD, GSH, and MDA
Showed anti-inflammatory markers measured by serum IL-4, IL-6,
hs-CRP, and TNF-a.

(216)
(216)

Curcumagalactomannoside (400mg/d) N=72, 6 wk
-Walking performance
-VAS score
-WOMAC score

Alleviated symptoms and pain measured by walking performance,
VAS and WOMAC scores

(217)

Curcumagalactomannoside (400mg/twice/
d)
Co-supplemented with Glucosamine
hydrochloride (500mg/twice/d)

N=80, 12 wk
-VAS score
-WOMAC score
-KPS score

Improved stiffness, pain and mobility measured by VAS, KPS and
WOMAC scores.

(218)

Curcumin (168mg/d) # N=106, 12 wk
Visual Analogue Scale
(VAS) score

No significant reduction in VAS score between case and control (219)

Nanocurcumin (40mg/twice/d) N=71, 6 wk
-WOMAC score

Significant decrease in overall WOMAC score for pain (134)
F
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# hand osteoarthritis.
mo, Month; wk, Week; d, Day; (CRP), C- reactive Protein; (SOD), Superoxide Dismutase; (GSH), Glutathione; (MDA), Malondialdehyde; (NSAID), Non-Steroidal Anti-inflammatory Drug; (IL),
Interleukin; (TNF-a), Tumor Necrosis Factor-a; (VAS), Visual Analog Scale; (JOA), Japanese Orthopedic Association Score for Osteoarthritic knees; (WOMAC), Western Ontario and
McMaster Universities Arthritis Index; (PGADA), Patient Global Assessment of Disease Activity; (sColl2-1), Serum Type 2 Collagen; (KPS), Knee Pain Scale; (LKSS), Lysholm Knee Scoring
Scale; (KOOS), Knee Injury and Osteoarthritis Outcome Score.
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associated models of arthritis (235) by modulating Cyclooxygenase

2 (COX-2) activity. Data showed that RvE1protectst inflammatory-

induced bone damage by regulating bone cell gene expression in a

model (236). Phospholipase-mediated releases of ARA, the

substrate for prostaglandin E2 (PGE2) synthesis, are also involved

in signaling bone turnover. COX2 converts ARA to PGE2 and

modulates both osteoclastogenesis by stimulating the expression of

RANK, RANKL, and osteoblastogenesis by promoting insulin-like

growth factor (IGF-1) and Wnt signalling, respectively (237). PGE2

levels are a potent modulator of resorption and bone formation,

while elevated PGE2 suppresses osteoblasts and promotes bone

differentiation and resorption by osteoclasts, whereas low levels

stimulate bone formation by osteoblasts (238). There is strong

evidence that a diet rich in w-3 fatty acid downregulates markers

related to oxidative stress, cartilage degradation, and inflammation

in chondrocytes while these markers are elevated with a higher w-6
fatty acids (7, 239–243). Therefore, the quality of polyunsaturated

fatty acids (PUFA) might have a distinct role in bone metabolism

since metabolites derived from w-6 and w-3 fatty acids can act on

precursor cells of osteoblast and adipocytes differentially (244).

Bioactive rich in w-6 fatty acids raises w-6/w-3 ratio and triggers

adipogenesis lineage of the bone marrow by promoting adipogenic

differentiation of mesenchymal cells, diverting their differentiation

into osteoblasts and thus disrupting the homeostasis of the

bone remodeling.

In contrast, bioactive rich with w-3 fatty acids do not exert a

strong adipogenesis induction and promote an inhibitory effect on

osteoclastogenesis that helps maintain the bone mineral mass and

thus allows osteoblastogenesis. Omega-3 fatty acids also regulate

musculoskeletal growth (245) and bone homeostasis by causing a

reduction in bone resorption when bone formation is consistent

(238). Studies suggest that omega-3 fatty acids exert their beneficial

effects on bone strength by improving microarchitecture with

concomitant increases in trabecular network with decreased

trabecular space, trabecular number, bone volume fraction and

bone surface density (246, 247). Mice fed with fish oil after

ovariectomy showed a reduced loss of bone mineral density (248),

while femur bone mineral content positively correlated with w-3
PUFAs in ovariectomized rats (249). DHA has been shown to

accumulate in bone periosteum and bone marrow and correlates

positively with bone mineral content (250). The w-3 PUFAs

contribute to the growth phase of the developing skeleton by

accelerating growth plate, bone growth, chondrocyte proliferation

and differentiation that collectively results in superior trabecular

and cortical structure to stiffer bones and improved bone quality as

evidenced in fat-1 mice (7). Clinical studies reiterated that w-3
PUFAs may be linked with reduced structural damage in bones and

improved function and pain in knee and hip OA patients (8,

251, 252).

A Rancho Bernardo study emphasized the roles of a-linoleic
acid (ALA), EPA, and DHA in bone health to understand the

relationship between w-6/w-3 ratio and bone mineral density (253).

A higher percentage was associated with less bone mineral density

(BMD), suggesting the crucial role of dietary w-3 PUFA in

preventing bone ailments. A similar study was conducted in older

women and concluded dietary PUFA positively modulates BMD in
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the lumbar spine (L2-L4) as well as BMD of the total body (254).

Studies have shown that w-3 PUFAs and metabolites influence bone

remodeling (255). The role of omega-3 fatty acids as a nutraceutical

in managing osteoarthritis revealed that both oxidative stress and

inflammation are involved (256). The w-3 PUFAs and their

metabolites have anti-inflammatory, antioxidant, and analgesic

properties, which prevent bone loss by upregulating the Akt

pathway and inhibiting the iNOS pathway (255), NF-kB pathway,

MAPK signaling, JNK pathway, IL-1b, COX-2, and MMP-13. The

pathogenesis of osteoarthritis has also been linked to adiposity.

Adiposity is a potent risk factor for bone ailments with increased

leptin levels. While excess w-6 PUFAs are known to cause

inflammation during adiposity, w-3 PUFAs overturn this,

reducing the risk and preventing bone ailments. The imbalance of

the optimal w-6/w-3 ratio has also been linked to osteoarthritis.

Hence, the use of w-3 fatty acids, particularly EPA or DHA, as a

nutraceutical supplementation resolves the skewed w-6/w-3 ratio,

helps reduce inflammation, and results in the management of

osteoarthritis and other bone-related conditions (257). High levels

of w-6 PUFA also cause synovial membrane inflammation due to

their ability to produce pro-inflammatory eicosanoids (258).

Available data suggest that bioactive rich with w-3 PUFAs could

have multiple benefits in modulating bone turnover, including its

formation, re-absorption, and density of the bone cells and as an

adjuvant with anti-inflammatory drugs to lower the systemic

inflammation associated with OA.

Alterations in the w-6/w-3 ratio also affect the gut microbiome.

Consumption of high w-6 fatty acids led to low-grade inflammation

at the systemic level, whereas w-3 fatty acids increased the

production of intestinal alkaline phosphatase that modulates gut

homeostasis (259). Marine molluscs like Perna canaliculus contain

high levels of omega-3 and various carbohydrates and proteins.

Clinical studies have shown that mussel extract has anti-

inflammatory effects and significantly affects the intestinal

microbiome by reducing the abundance of Clostridia species

(260). Fish oil rich in DHA, upon supplementation in ob/ob

mice, results in significant production of SCFA, reducing the

cholesteryl esters and triglycerides. DHA was found to upend

intestinal dysbiosis and inhibit lipid droplet formation in the

liver. The abundance of Akkkermansia and Muribaculaceae

increased, whereas a reduction was observed in Lachnospiraceae,

a pathogenic bacterium (261). Clinical interventions with various

bioactive supplemented in knee osteoarthritis patient and its

outcome are captured in Table 1.
5 Conclusions

Systemic inflammation is the root cause of most

musculoskeletal disorders, where gut dysbiosis and pro-

inflammatory triggers strongly modulate disease progression. The

interplay between the gut, immune system, and local tissue

metabolism drives osteoarthritis pathophysiology. Intestinal

dysbiosis disrupts the abundance of essential commensals that

protect the mucosal integrity of gut permeability, maintain

immune tolerance, produce key metabolites or vitamin synthesis,
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and generate immune responses against pathogenic bacteria.

Moreover, inflammatory states in osteoarthritis change microflora

and accumulate bacterial LPS. TLR4 receptor activation is critical in

regulating gut permeability and is associated with acute and chronic

inflammation. The dysregulated TLR signaling negatively impacts

the gut, compromising its permeability and resulting in

inflammation and dysbiosis. Modulators of TLR signalling can

play a crucial role in maintaining gut homeostasis. Despite the

evidence, the specific sets of gut microbiotas in OA still needs to be

understood in detail. Most of the evidence on the role of gut

microbiota in OA, obtained from animal models, thus warrants

control clinical trials. The association of dietary omega-3 fatty acids

with vitamin D directly or indirectly causes variation in the gut

microbial composition, affecting the progression of inflammatory

and musculoskeletal disorders. The intestinal microbiome’s various

roles in modulating the immune system and their impact by

Bioactives still need to be understood. Further, the role of gut

microbiome has yet to be elucidated in the various clinical trials, for

example, bioactive curcumin used as an intervention against

osteoarthritis (Table 2).

Curcumin promised to revert LPS-induced inflammation by

improving synovial endotoxemia and releasing a specific set of gut

microbiotas that potentially improve osteoarthritis functions. The

absence of curcumin detected in the subjects’ serum after large

intake indicates that anti-oxidant, anti-inflammatory, and other

beneficial effects reported by several studies could mediate by

signaling receptor activation. Curcumin might target NLRP3

inflammasome by reducing NLRP3-mediated inflammation and

oxidative stress and possibly ameliorating osteoarthritis

pathophysiology. Curcumin has the same vanilloid ring

pharmacophore in its structure as capsaicin, which rationalizes

curcumin’s affinity for the activation of TRPV1. Thus, the

potential mechanisms involving nociception in pain-modulating

pathways via TRV1 channel signaling are emerging with

these Bioactives.

Bioactives could be potential alternative therapeutic in

managing chronic inflammatory diseases like osteoarthritis.

However, various confounders like geography, dietary habits,

exposure to sunlight, serum vitamin D levels, history of

medication, infection, endogenous gut microbial diversity, and

other variability at inter-individual and intra-individual levels

could influence the beneficial effects of Bioactives in managing

osteoarthritis pathophysiology. The article highlighted the

importance of bioactive compounds in preventing and treating
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OA. However, further work is required involving advanced

technology to separate more bioactive compounds and explore

the exact molecular mechanism and therapeutic targets of the

bioactive compounds, which will be helpful for the treatment of

OA in the early stage, preventing disability and enhancing the

quality of patients’ lives.
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