1,754 research outputs found

    Complete Boolean algebras are Bousfield lattices

    Full text link
    Given a complete Heyting algebra we construct an algebraic tensor triangulated category whose Bousfield lattice is the Booleanization of the given Heyting algebra. As a consequence we deduce that any complete Boolean algebra is the Bousfield lattice of some tensor triangulated category. Using the same ideas we then give two further examples illustrating some interesting behaviour of the Bousfield lattice.Comment: 10 pages, update to clarify the products occurring in the main constructio

    Supersymmetry and the Cosmic Ray Positron Excess

    Get PDF
    We explore several supersymmetric alternatives to explain predictions for the cosmic ray positron excess. Light sneutrino or neutralino LSP's, and a fine-tuned model designed to provide a delta-function input, can give adequate statistical descriptions of the reported HEAT data if non-thermal production of the relic cold dark matter density dominates and/or if ``boost factors''(that could originate in uncertainties from propagation or local density fluctuations) to increase the size of the signal are included. All the descriptions can be tested at the Tevatron or LHC, and some in other WIMP detecting experiments.Comment: 15 pages, 3 figure

    Shaping, imaging and controlling plasmonic interference fields at buried interfaces

    Get PDF
    Filming and controlling plasmons at buried interfaces with nanometer (nm) and femtosecond (fs) resolution has yet to be achieved and is critical for next generation plasmonic/electronic devices. In this work, we use light to excite and shape a plasmonic interference pattern at a buried metal-dielectric interface in a nanostructured thin film. Plasmons are launched from a photoexcited array of nanocavities and their propagation is filmed via photon-induced near-field electron microscopy (PINEM). The resulting movie directly captures the plasmon dynamics, allowing quantification of their group velocity at approximately 0.3c, consistent with our theoretical predictions. Furthermore, we show that the light polarization and nanocavity design can be tailored to shape transient plasmonic gratings at the nanoscale. These results, demonstrating dynamical imaging with PINEM, pave the way for the fs/nm visualization and control of plasmonic fields in advanced heterostructures based on novel 2D materials such as graphene, MoS2_2, and ultrathin metal films.Comment: 16 pages, 5 figures, 3 supplementary figure

    Dark Matter detection via lepton cosmic rays

    Get PDF
    Recent observations of lepton cosmic rays, coming from the PAMELA and FERMI experiments, have pushed our understanding of the interstellar medium and cosmic rays sources to unprecedented levels. The imprint of dark matter on lepton cosmic rays is the most exciting explanation of both PAMELA's positron excess and FERMI's total flux of electrons. Alternatively, supernovae are astrophysical objects with the same potential to explain these observations. In this work, we present an updated study of the astrophysical sources of lepton cosmic rays and the possible trace of a dark matter signal on the positron excess and total flux of electrons.Comment: 6 pages and 3 figures. Proceedings for PASCOS 2010, Valencia, Spai

    Design and implementation of a fs-resolved transmission electron microscope based on thermionic gun technology [post-print]

    Get PDF
    In this paper, the design and implementation of a femtosecond-resolved ultrafast transmission electron microscope is presented, based on a thermionic gun geometry. Utilizing an additional magnetic lens between the electron acceleration and the nominal condenser lens system, a larger percentage of the electrons created at the cathode are delivered to the specimen without degrading temporal, spatial and energy resolution significantly, while at the same time maintaining the femtosecond temporal resolution. Using the photon-induced near field electron microscopy effect (PINEM) on silver nanowires the cross-correlation between the light and electron pulses was measured, showing the impact of the gun settings and initiating laser pulse duration on the electron bunch properties. Tuneable electron pulses between 300 fs and several ps can be obtained, and an overall energy resolution around 1 eV was achieved

    Imaging in myeloma with focus on advanced imaging techniques.

    Get PDF
    In recent years, there have been major advances in the imaging of myeloma with whole body MRI incorporating diffusion-weighted imaging, emerging as the most sensitive modality. Imaging is now a key component in the work-up of patients with a suspected diagnosis of myeloma. The International Myeloma Working Group now specifies that more than one focal lesion on MRI or lytic lesion on whole body low-dose CT or fludeoxyglucose (FDG) PET/CT fulfil the criteria for bone damage requiring therapy. The recent National Institute for Health and Care Excellence myeloma guidelines recommend imaging in all patients with suspected myeloma. In addition, there is emerging data supporting the use of functional imaging techniques (WB-DW MRI and FDG PET/CT) to predict outcome and evaluate response to therapy. This review summarises the imaging modalities used in myeloma, the latest guidelines relevant to imaging and future directions

    Homotopy Theoretic Models of Type Theory

    Full text link
    We introduce the notion of a logical model category which is a Quillen model category satisfying some additional conditions. Those conditions provide enough expressive power that one can soundly interpret dependent products and sums in it. On the other hand, those conditions are easy to check and provide a wide class of models some of which are listed in the paper.Comment: Corrected version of the published articl

    Review on Neutrino Telescopes

    Full text link
    I will discuss the motivations for Neutrino Astronomy and its prospects given the current experimental scenario, which is the main focus of this paper. I will also go through the first results of the IceCube detector deep in the ice and of the ANTARES undersea telescope underlying complementary aspects, common and different challenges. It is an exciting time for this science since the first completed undersea detector is successfully taking data and the first cubic kilometer detector is going to be shortly more than half-way from its completion in Antarctica.Comment: Proceeding of CRIS2008 Conference, Salina, Sept. 2008, 9 pages, 8 figure
    • …
    corecore