9 research outputs found

    Role of JIP1-JNK Signaling in Beta-Cell Function and Autophagy

    Get PDF
    Proper functioning of endocrine cells is crucial for organismal homeostasis. The underlying mechanisms that fine-tune the amount, and the timing of hormone secretion are not clear. JIP1 / MAPK8IP1 (JNK interacting protein 1) is a scaffold protein that mediates cellular stress response, and is highly expressed in endocrine cells, including insulin secreting b-cells in pancreas islets. However, the role of JIP1 in b-cells is unclear. This study demonstrates that b-cell specific Jip1 ablation results in decreased glucose-induced insulin secretion, without a change in Insulin1 and Insulin2 gene expression. Inhibition of both JIP1-kinesin interaction, and JIP1-JNK interaction by genetic mutations also resulted in decreased insulin secretion, suggesting that JIP1 may mediate insulin vesicle trafficking through interacting with kinesin and JNK. Autophagy is a cellular recycling mechanism and implicated in the b-cell function. Both JIP1 and JNK are proposed to regulate autophagy pathway. However, it is unclear whether JNK plays a role in the promotion or suppression of autophagy. The findings of this study show that JNK is not essential for autophagy induction, but can regulate autophagy in a cell and context specific manner. The results in this thesis implies a mechanism that link cellular trafficking and stress signaling pathways in the regulated hormone secretion. In addition to the known role of JIP1 in metabolism and insulin resistance, this finding may also be relevant to endocrine pathologies

    Role of the MAPK/cJun NH2-Terminal Kinase signaling pathway in starvation-induced autophagy

    Get PDF
    Autophagy is required for cellular homeostasis and can determine cell viability in response to stress. It is established that MTOR is a master regulator of starvation-induced macroautophagy/autophagy, but recent studies have also implicated an essential role for the MAPK8/cJun NH2-terminal kinase 1 signal transduction pathway. We found that MAPK8/JNK1 and MAPK9/JNK2 were not required for autophagy caused by starvation or MTOR inhibition in murine fibroblasts and epithelial cells. These data demonstrate that MAPK8/9 has no required role in starvation-induced autophagy. We conclude that the role of MAPK8/9 in autophagy may be context-dependent and more complex than previously considered

    JIP1-Mediated JNK Activation Negatively Regulates Synaptic Plasticity and Spatial Memory

    Get PDF
    The c-Jun N-terminal kinase (JNK) signal transduction pathway is implicated in learning and memory. Here, we examined the role of JNK activation mediated by the JIP1 scaffold protein. We compared male wild-type mice with a mouse model harboring a point mutation in the Jip1 gene that selectively blocks JIP1-mediated JNK activation. These male mutant mice exhibited increased NMDA receptor currents, increased NMDA receptor-mediated gene expression, and a lower threshold for induction of hippocampal long-term potentiation. The JIP1 mutant mice also displayed improved hippocampus-dependent spatial memory and enhanced associative fear conditioning. These results were confirmed using a second JIP1 mutant mouse model that suppresses JNK activity. Together, these observations establish that JIP1-mediated JNK activation contributes to the regulation of hippocampus-dependent, NMDA receptor-mediated synaptic plasticity and learning. SIGNIFICANCE STATEMENT: The results of this study demonstrate that JNK activation induced by the JIP1 scaffold protein negatively regulates the threshold for induction of long-term synaptic plasticity through the NMDA-type glutamate receptor. This change in plasticity threshold influences learning. Indeed, mice with defects in JIP1-mediated JNK activation display enhanced memory in hippocampus-dependent tasks, such as contextual fear conditioning and Morris water maze, indicating that JIP1-JNK constrains spatial memory. This study reports the identification of JIP1-mediated JNK activation as a novel molecular pathway that negatively regulates NMDA receptor-dependent synaptic plasticity and memory

    Effects of Keratinocytes Differentiated from Embryonic and Adipogenic Stem Cells on Wound Healing in a Diabetic Mouse Model

    No full text
    Objective. The current study aims to assess the molecular effects of keratinocytes derived from embryonic and adipose-derived stem cells (ADSCs) on wound healing in mice with diabetes mellitus. Materials and Methods. Sixty BALB/c mice were randomly allocated into 6 groups of 10. Following diabetes mellitus induction by intraperitoneal injection of streptozocin, wounds were created and covered with gauze dipped in various solutions: isotonic saline, carrier and transfer medium-engineered dermal template, keratinocytes derived from embryonic stem cells (ESCs), keratinocytes differentiated from ADSCs, or ADSC medium alone. Histopathological changes and immunohistochemical alterations in the activities of cytokeratin 8, cytokeratin 14, epidermal growth factor (EGF), interleukin 8 (IL-8), fibroblast growth factor 2 (FGF-2), monocyte chemoattractant protein 1 (MCP-1), and collagen I were compared among the 6 groups. Results. Histopathological analysis revealed that wound healing was accelerated by application of keratinocytes derived from ESCs. Such cells increased the activities of cytokeratin 8 and cytokeratin 14. No significant among-group differences were noted in terms of IL-8, FGF-2, MCP-1, or collagen I production. Conclusions. Keratinocytes derived from ESCs accelerated wound healing in mice with diabetes mellitus. The beneficial effects were evident both histomorphologically and immunohistochemically. Although keratinocytes derived from ADSCs are readily available, such cells did not accelerate wound healing

    Role of the MAPK/cJun NH<sub>2</sub>-terminal kinase signaling pathway in starvation-induced autophagy

    No full text
    <p>Autophagy is required for cellular homeostasis and can determine cell viability in response to stress. It is established that MTOR is a master regulator of starvation-induced macroautophagy/autophagy, but recent studies have also implicated an essential role for the MAPK8/cJun NH<sub>2</sub>-terminal kinase 1 signal transduction pathway. We found that MAPK8/JNK1 and MAPK9/JNK2 were not required for autophagy caused by starvation or MTOR inhibition in murine fibroblasts and epithelial cells. These data demonstrate that MAPK8/9 has no required role in starvation-induced autophagy. We conclude that the role of MAPK8/9 in autophagy may be context-dependent and more complex than previously considered.</p> <p><b>Abbreviations</b>: AKT: thymoma viral proto-oncogene;ALB: albumin; ATG4: autophagy related 4; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; BNIP3: BCL2/adenovirus E1B interacting protein 3; CQ: chloroquine diphosphate; DMEM: Dulbecco’s modified Eagle’s medium; EDTA: ethylenediaminetetraacetic acid; EBSS: Earle’s balanced salt solution; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HRAS: Harvey rat sarcoma virus oncogene; IgG: Immunoglobulin G; MAPK3/ERK1: mitogen-activated protein kinase 3; MAPK8/JNK1: mitogen-activated protein kinase 8; MAPK9/JNK2: mitogen-activated protein kinase 9; MAPK10/JNK3: mitogen-activated protein kinase 10; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MTOR: mechanistic target of rapamycin kinase; RPS6KB1/p70: ribosomal protein S6 kinase, polypeptide 1; PPARA: peroxisome proliferator activated receptor alpha; SEM: standard error of the mean; SQSTM1/p62: sequestosome 1; TORC1: target of rapamycin complex 1; TORC2: target of rapamycin complex 2; TRP53: transforming related protein 53; TUBA: tubulin alpha; UV: ultraviolet; WT: wild-type </p

    Profiling the polyadenylated transcriptome of extracellular vesicles with long-read nanopore sequencing

    No full text
    Abstract Background While numerous studies have described the transcriptomes of extracellular vesicles (EVs) in different cellular contexts, these efforts have typically relied on sequencing methods requiring RNA fragmentation, which limits interpretations on the integrity and isoform diversity of EV-targeted RNA populations. It has been assumed that mRNA signatures in EVs are likely to be fragmentation products of the cellular mRNA material, and the extent to which full-length mRNAs are present within EVs remains to be clarified. Results Using long-read nanopore RNA sequencing, we sought to characterize the full-length polyadenylated (poly-A) transcriptome of EVs released by human chronic myelogenous leukemia K562 cells. We detected 443 and 280 RNAs that were respectively enriched or depleted in EVs. EV-enriched poly-A transcripts consist of a variety of biotypes, including mRNAs, long non-coding RNAs, and pseudogenes. Our analysis revealed that 10.58% of all EV reads, and 18.67% of all cellular (WC) reads, corresponded to known full-length transcripts, with mRNAs representing the largest biotype for each group (EV = 58.13%, WC = 43.93%). We also observed that for many well-represented coding and non-coding genes, diverse full-length transcript isoforms were present in EV specimens, and these isoforms were reflective-of but often in different ratio compared to cellular samples. Conclusion This work provides novel insights into the compositional diversity of poly-A transcript isoforms enriched within EVs, while also underscoring the potential usefulness of nanopore sequencing to interrogate secreted RNA transcriptomes

    Additional file 1 of Profiling the polyadenylated transcriptome of extracellular vesicles with long-read nanopore sequencing

    No full text
    Additional file 1: Figure S1. Library preparation and initial analyses. Figure S2. Gene ontology (GO) associations of EV and WC poly-A transcripts. Figure S3. Size distribution of EV-derived RNAs. Figure S4. Analyses of differentially expressied RNA isoforms
    corecore