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Abbreviations 

AKT thymoma viral proto-oncogene 

ALB albumin 

ATG4 autophagy related 4 

BCL2 B cell leukemia/lymphoma 2 

BECN1 beclin 1, autophagy related 

BNIP3 BCL2/adenovirus E1B interacting protein 3 

CQ  chloroquine diphosphate 

DMEM Dulbecco’s modified Eagle’s medium 

EDTA ethylenediaminetetraacetic acid 

EBSS Earle’s balanced salt solution 

FBS fetal bovine serum 

GAPDH glyceraldehyde-3-phosphate dehydrogenase 

GFP green fluorescent protein 

HRAS Harvey rat sarcoma virus oncogene 

IgG Immunoglobulin G 

MAPK3/ERK1 mitogen-activated protein kinase 3  
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MAPK8/JNK1 mitogen-activated protein kinase 8 

MAPK9/JNK2 mitogen-activated protein kinase 9  

MAPK10/JNK3 mitogen-activated protein kinase 10  

MAP1LC3B/LC3B microtubule-associated protein 1 light chain 3 beta 

MEFs mouse embryonic fibroblasts 

MTOR mechanistic target of rapamycin kinase 

RPS6KB1/p70  ribosomal protein S6 kinase, polypeptide 1  

PPARA peroxisome proliferator activated receptor alpha 

SEM standard error of the mean 

SQSTM1/p62 sequestosome 1  

TORC1 target of rapamycin complex 1 

TORC2 target of rapamycin complex 2 

TRP53 transforming related protein 53 

TUBA tubulin alpha 

UV ultraviolet 

WT wild-type  
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ABSTRACT 

Autophagy is required for cellular homeostasis and can determine cell viability in 

response to stress. It is established that MTOR is a master regulator of starvation-induced 

macroautophagy/autophagy, but recent studies have also implicated an essential role for 

the MAPK8/cJun NH2-terminal kinase 1 signal transduction pathway. We found that 

MAPK8/JNK1 and MAPK9/JNK2 were not required for autophagy caused by starvation 

or MTOR inhibition in murine fibroblasts and epithelial cells. These data demonstrate 

that MAPK8/9 has no required role in starvation-induced autophagy. We conclude that 

the role of MAPK8/9 in autophagy may be context-dependent and more complex than 

previously considered.  
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Introduction 

Autophagy is a cellular mechanism that enables recycling of cytoplasmic contents and 

plays an important role in cellular homeostasis [1, 2]. Macroautophagy/autophagy is 

initiated with the formation of the phagophore, a double-membrane structure that 

surrounds a portion of cytoplasm [3]. These structures progress to the development of 

autophagosomes that fuse with lysosomes to form autolysosomes that release nutrients to 

the cytoplasm [3]. A major regulator of autophagy is established to be the MTOR 

(mechanistic target of rapamycin kinase) pathway that can sense cellular energy and 

amino acid levels [4]. TORC1 (target of rapamycin complex 1) is activated when cells 

are in a nutrient rich environment, which leads to inhibition of autophagy [4]. However, 

suppression of TORC1 activity in response to low energy balance or amino acid 

starvation causes increased autophagy [4].  

It was recently reported that MAPK8/JNK1 (mitogen-activated protein kinase 8), 

but not MAPK9/JNK2 (mitogen-activated protein kinase 9), is required for the induction 

of autophagy by starvation [5]. This mechanism of MAPK8 signaling is mediated by 

BCL2 (B cell leukemia/lymphoma 2) phosphorylation (on Thr69, Ser70, and Ser87) that 

disrupts the interaction of BCL2 with BECN1 (beclin 1, autophagy related) and initiates 

BECN1-dependent autophagy [5]. Subsequent studies have provided strong support for 

this role of MAPK8 in autophagy [6-19], although contributing roles for MAPK9 [20-23] 

and alternative potential functions of MAPK8 related to autophagy have also been 

reported [24-29].  
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The MAPK8-promoted autophagy pathway raises several questions. First, what is 

the mechanistic relationship between the MAPK8 and MTOR pathways in the regulation 

of autophagy by starvation? Second, since MAPK8 exhibits functional redundancy as a 

BCL2 kinase [20, 30-34], what mechanism accounts for the requirement of MAPK8 for 

starvation-induced autophagy? The purpose of this study was to examine these two 

questions in the context of starvation-induced autophagy. We show that the role of 

MAPK8/9 in autophagy may be context-dependent and substantially more complex than 

previously considered.   

 

Results 

MTOR-regulated autophagy does not require MAPK8/9 

It is established that MTOR is a master regulator of starvation-induced autophagy [4]. 

The requirement of MAPK8 for starvation-induced autophagy [5] may therefore reflect a 

role for MAPK8 upstream or down-stream of MTOR. Indeed, previous studies have 

demonstrated that MAPK8/9 can be activated in response to TORC1 signaling [35] and 

that TORC1 activation can require MAPK8/9 signaling [28]. Alternatively, MAPK8/9 

and TORC1 may function in parallel pathways that control autophagy.  

 To test whether MAPK8/9 plays a role in autophagy induction downstream of 

MTOR, we examined the effect of torin 1, a small molecule inhibitor of MTOR. Control 

studies demonstrated that torin 1 prevented the phosphorylation of the MTOR substrate 

RPS6KB1/p70 (ribosomal protein S6 kinase, polypeptide 1) on Thr389 in both wild-type 

(WT) and mapk8
-/-

 mapk9
-/-

 immortalized mouse embryonic fibroblasts (MEFs) (Figs. 1A 

and S1A). To assess the effect of torin 1 on autophagy, we initially examined the 
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formation of MAP1LC3B /LC3B (microtubule-associated protein 1 light chain 3 beta) 

puncta in the cytoplasm by fluorescence microscopy. We found that torin 1 caused LC3B 

puncta in both WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs (Fig. 1B). This observation 

suggested that MAPK8/9 deficiency caused no major change in autophagy as a result of 

MTOR inhibition. This conclusion was confirmed by measurement of autophagic flux by 

monitoring the formation of phosphatidylethanolamine-conjugated LC3B-II in response 

to MTOR inhibition in the presence of a lysosomal inhibitor [36] (Figs. 1C and S1B) and 

reduced accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1) (Figs. 

1D and S1C).  

 Torin 1 is an active site-directed inhibitor of MTOR and therefore inhibits both 

MTOR complexes TORC1 and TORC2 (target of rapamycin complex 2) [37]. To test the 

role of TORC1, we used a low dose of rapamycin to selectively block TORC1 [37]. 

Control studies demonstrated that rapamycin inhibited phosphorylation of the TORC1 

substrate RPS6KB1 at Thr389, but not the TORC2 substrate AKT (thymoma viral proto-

oncogene) at target site Ser473 (Fig. 1E). We found that treatment of WT and mapk8
-/-

 

mapk9
-/-

 immortalized MEFs with rapamycin caused a similar increase in autophagic flux 

that was measured by monitoring the accumulation of LC3B-II in the presence of a 

lysosomal inhibitor [36] (Figs. 1F and S1D).  

 Collectively, these data demonstrate that MAPK8/9 are not required for 

autophagy induced in response to inhibition of TORC1 (by rapamycin) or inhibition of 

TORC1 and TORC2 (by torin 1).  

Starvation-induced autophagy does not require MAPK8/9 
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Our analysis of the effects of MTOR on autophagy in immortalized MEFs demonstrated 

that MAPK8/9 does not regulate autophagy downstream of MTOR (Fig. 1). It was 

therefore possible that MAPK8/9 functions upstream of MTOR in the regulation of 

autophagy by starvation [28]. To test this hypothesis, we examined TORC1 signaling in 

response to starvation. We found that starvation prevented the phosphorylation of the 

TORC1 substrate RPS6KB1 at Thr389 in both WT and mapk8
-/-

 mapk9
-/-

 immortalized 

MEFs (Figs. 2A and S2A). MAPK8/9 are therefore not required for suppression of 

TORC1 signaling by starvation. Studies of autophagy demonstrated similar LC3B puncta 

formation following starvation of WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs (Fig. 

2B). Similarly, no differences in autophagic flux (Figs. 2C and S2B) or accumulation of 

the autophagic substrate SQSTM1 (Figs. 2D and S2C) were detected between WT and 

mapk8
-/-

 mapk9
-/-

 immortalized MEFs. This analysis suggests that MAPK8/9 in 

immortalized MEFs play no required role in starvation-induced autophagy.  

 

MAPK8/9 activation and MTOR inhibition 

Our inability to detect a difference in autophagy between WT and mapk8
-/-

 mapk9
-/-

 

immortalized MEFs was not anticipated. One explanation for this finding is that 

MAPK8/9 are not regulated under the conditions that we employed for these 

experiments. Indeed, we found that MTOR inhibition caused by starvation (Figs. 3A and 

S3A) or treatment with torin 1 (Figs. 3B and S3B) under the conditions of the autophagy 

assays did not lead to MAPK8/9 activation. It is therefore possible that in a different cell 

type, or under different culture conditions, MAPK8/9 could be activated and thus may 

contribute to the regulation of autophagy during starvation or torin 1 treatment.  
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To test whether MAPK8/9 activation is sufficient for the induction of autophagy, 

we examined the effect of MAPK8/9 activation on the conversion of LC3B-I to LC3B-II 

by immunoblot analysis using WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs. We found 

that activated MAPK8/9 caused no change in LC3B-II formation (Figs. 3C and S3C). 

These data suggest that MAPK8/9 activation is not sufficient for autophagy and that 

MAPK8/9-promoted autophagy likely involves interactions between MAPK8/9 and other 

pro-autophagic signaling pathways.  

 

MAPK8/9 is not required for starvation or torin 1-induced autophagy in primary 

MEFs 

Our initial studies of immortalized MEFs may be compromised by the loss of TRP53 

(transforming related protein 53) function in these cells, which may change autophagic 

responses [38]. We therefore repeated our studies using early passage primary WT and 

mapk8
-/-

 mapk9
-/-

 MEFs (Fig. 4A). The primary MEFs exhibited reduced autophagy flux 

compared with immortalized MEFs. We found that MAPK8/9 deficiency caused no 

change in LC3B puncta formation in response to starvation (Fig. 4B). Similarly, 

MAPK8/9-deficiency caused no change in starvation-induced autophagic flux (Figs. 4C 

and S4A) or accumulation of the autophagic substrate SQSTM1 (Figs. 4D and S4B). 

Control studies demonstrated that starvation under these conditions did not activate 

MAPK8/9 (Fig. 4E), but did prevent phosphorylation of the TORC1 substrate RPS6KB1 

at Thr389 (Figs. 4F and S4C).  
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 Studies of torin 1-induced autophagy demonstrated similar inhibition of the 

phosphorylation of the TORC1 substrate RPS6KB1 at Thr389 in primary WT and mapk8
-

/-
 mapk9

-/-
 MEFs (Figure S5A) and similar torin 1-induced LC3B puncta formation (Fig. 

S5B). A small decrease in autophagic flux (Fig. S5C) and modestly increased 

accumulation of the autophagic substrate SQSTM1 (Fig. S5D) was detected in mapk8
-/-

 

mapk9
-/-

 primary MEFs compared with WT primary MEFs.  

 Together, these data indicate that MAPK8/9 play no required role in starvation-

induced autophagy in primary MEFs.  

 

Requirement of MAPK8 and MAPK9 for starvation-induced autophagy in primary 

MEFs 

It is possible that our analysis of compound MAPK8/9-deficiency in MEFs is 

compromised by compensatory mechanisms that are engaged in these cells. Indeed, the 

role of MAPK8/9 in starvation-induced autophagy was first established in studies using 

mapk8
-/-

 and mapk9
-/-

 primary MEFs [5]. We therefore examined the effects of starvation 

on WT, mapk8
-/-

, and mapk9
-/-

 primary MEFs. Starvation prevented the phosphorylation 

of the TORC1 substrate RPS6KB1 at Thr389 in these cells (Fig. S6A). Studies of WT, 

mapk8
-/-

, and mapk9
-/-

 primary MEFs identified similar LC3B puncta formation (Fig. 

S6B), accumulation of the autophagic substrate SQSTM1 (Figure S6C), and autophagic 

flux (Fig. S6D). These data demonstrate that MAPK8-deficiency and MAPK9-deficiency 

(Fig. S6) cause no major defects in starvation-induced autophagy.  
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Requirement of MAPK8/9 for starvation-induced autophagy in primary epithelial cells 

Our analysis of primary and immortalized MEFs suggests that MAPK8/9 play no 

required role in starvation-induced autophagy (Figs. 2 and 4). However, studies of a 

different cell type may lead to a different conclusion. We therefore examined starvation-

induced autophagic flux in primary kidney epithelial cells. We found that MAPK8/9 

deficiency caused no difference in autophagic flux in these epithelial cells (Fig. S7A) and 

no difference in the accumulation of the autophagic substrate SQSTM1 (Fig. S7B) in 

response to starvation. These data demonstrate that MAPK8/9 have no required role in 

primary kidney epithelial cells for starvation-induced autophagy.  

 

Requirement of MAPK8/9 for autophagy in response to Ras and hypoxia 

If MAPK8/9 are not required for autophagy in response to starvation or MTOR 

inhibition, it is possible that MAPK8/9 may be required for autophagy in response to 

other stimuli. We therefore examined control trp53
-/-

 MEFs (-Ras) and Hras (Harvey rat 

sarcoma virus oncogene)-transformed (+Ras) trp53
-/-

 MEFs without (WT) and with 

ablation of the Mapk8 and Mapk9 genes (Fig. S8A). Autophagic flux studies 

demonstrated no significant effects of MAPK8/9 deficiency (Fig. S8B). These data 

indicate that MAPK8/9 are not required for autophagy in control or Hras-transformed 

trp53
-/-

 MEFs.  

 We also studied control and Hras-transformed trp53
-/-

 MEFs without (WT) and 

with ablation of the Mapk8 and Mapk9 genes under hypoxia (1.5% O2) conditions (Fig. 

S9A). Autophagic flux studies demonstrated no significant effects of MAPK8/9 
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deficiency (Fig. S9B). These data indicate that MAPK8/9 are not required for autophagy 

in control or Hras-transformed trp53
-/-

 MEFs under hypoxia conditions.  

 

MAPK8/9-regulated autophagy in primary hepatocytes 

Autophagy plays a major role in systemic metabolic homeostasis [39] and hepatic lipid 

metabolism [40]. Moreover, hepatocytes have been reported to exhibit MAPK8/9-

dependent autophagy [6]. We therefore examined the requirement of MAPK8/9 for 

autophagy using primary hepatocytes prepared from Albumin-Cre
-/+

 (Alb-Cre
-/+

) control 

mice and Alb-cre
-/+

 Mapk8
LoxP/LoxP

 Mapk9
LoxP/LoxP

 mice. We found that MAPK8/9-

deficient hepatocytes exhibited increased accumulation of LC3B-II following lysosomal 

inhibition and the reduced accumulation of the autophagic substrate SQSTM1 in 

MAPK8/9-deficient hepatocytes compared with control hepatocytes (Figs. 5A and B, 

S10A and B). These observations suggest that MAPK8/9 may inhibit autophagy in 

hepatocytes.  

 To confirm the conclusion that MAPK8/9 suppresses autophagic flux in primary 

hepatocytes, we examined wild-type (WT) hepatocytes treated with JNK-IN-8, a potent 

and selective small molecule inhibitor of MAPK8/9 [41]. We found that treatment with 

JNK-IN-8 caused increased accumulation of LC3B-II following lysosomal inhibition 

(Figs. 5C and S10C) and reduced accumulation of the autophagic substrate SQSTM1 

(Figs. 5D and S10D). These data indicate that pharmacological inhibition of MAPK8/9 

causes increased autophagic flux.  

 The increased autophagy caused by MAPK8/9 loss-of-function in hepatocytes 

compared with WT hepatocytes was unexpected. This increased autophagy may reflect 
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the established role of MAPK8/9 to strongly suppress the transcriptional activity of the 

PPARA (peroxisome proliferator activated receptor alpha) nuclear receptor [42] that can 

promote autophagy through increased expression of autophagic genes [43]. This role of 

MAPK8/9 to suppress basal autophagy in hepatocytes is similar to the established 

function of MAPK8, MAPK9, and MAPK10/JNK3 (mitogen-activated protein kinase 10) 

in neurons to suppress basal autophagy by repression of autophagic gene expression [27].  

 

 

Discussion 

Studies of the genetically tractable organism Drosophila melanogaster demonstrate that 

the basket gene, which encodes a MAPK8/9 ortholog, can increase autophagy [44]. It is 

established that Basket in Drosophila promotes autophagy by causing increased 

expression of autophagy proteins [44]. This mechanism is also found in mammals [45-

51]. Thus, MAPK8/9 may promote autophagy by increasing the expression of ATG4 

(autophagy related 4) [49], ATG5 [45], BECN1 [48], BNIP3 (BCL2/adenovirus E1B 

interacting protein 3) [47, 50], LC3B [46, 51], and SQSTM1 [46]. MAPK8/9-regulated 

gene expression therefore represents an evolutionarily conserved mechanism of 

autophagic regulation. The specific physiological effects of MAPK8/9 on the expression 

of autophagic proteins likely reflects the combinatorial actions of MAPK8/9-regulated 

transcription factors together with other transcription factors that are activated by 

different signal transduction pathways. MAPK8/9 may therefore play an essential role in 

mammalian autophagy in some specific physiological or pathological contexts.  
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Recently, MAPK8 was proposed to promote starvation-induced autophagy in 

MEFs by a non-transcriptional mechanism [5]. It was reported that mapk8
-/-

 MEFs, but 

not mapk9
-/-

 MEFs, are resistant to starvation-induced autophagy [5]. The proposed 

mechanism was mediated by phosphorylation of BCL2 on Thr69, Ser70, and Ser87 by 

MAPK8, disruption of BCL2-BECN1 complexes, and the initiation of BECN1-dependent 

autophagy [5]. This mechanism implies that MAPK8 is essential for BCL2 

phosphorylation [5]. However, other studies indicate that MAPK8 may only serve a 

redundant role in BCL2 phosphorylation [20, 30-34]. The essential non-transcriptional 

role of MAPK8 in starvation-induced autophagy [5] is therefore likely to be mediated by 

BCL2 phosphorylation only in specific cellular contexts.  

 Possible roles of MAPK8 in starvation-induced autophagy include functional 

interactions with TORC1, a master regulator of starvation-induced autophagy [4]. Indeed, 

previous studies have demonstrated that MAPK8/9 can be activated in response to 

TORC1 signaling [35] and that TORC1 activation can require MAPK8/9 signaling [28]. 

However, we found no requirement for MAPK8/9 upstream (Fig. 1) or downstream (Fig. 

2) of TORC1 during starvation-induced autophagy. The essential function of MAPK8/9 

must therefore play a role in a pathway that is parallel to TORC1. These observations led 

us to test whether MAPK8/9 is required for starvation-induced autophagy. Our analysis 

demonstrates that MAPK8/9 is not required for starvation-induced autophagy in mouse 

fibroblasts or epithelial cells (Figs. 2 and S7).  

 Many reported studies support the conclusion that MAPK8/9 plays an essential 

role in the promotion of autophagy [5-23]. In contrast, our analysis does not indicate a 

major role for MAPK8/9 in starvation-induced autophagy. It is likely that small 



 
 

 

14 

differences in cell culture conditions and starvation conditions may contribute to 

discrepancies between our analysis (Fig. 2) and previously published reports of the role 

of MAPK8/9 in MEFs [5]. The use of the small molecule SP600125, that inhibits 

MAPK8/9 and many other protein kinases [52], to draw conclusions concerning the 

specific role of MAPK8/9 may also contribute to conclusions [8, 10, 12-19, 22, 51] that 

contrast with those drawn from our analysis of MAPK8/9 knockout cells. Finally, some 

studies that have identified a role for MAPK8/9 do not focus on starvation-induced 

autophagy. One example is the requirement of MAPK8/9 for oncolytic adenovirus-

mediated autophagy [20]. Clearly our conclusions concerning the lack of a major role for 

MAPK8/9 in autophagy are restricted to the starvation, transformation, and hypoxia 

paradigms that we studied. Moreover, it should be noted that we found that starvation or 

an MTOR inhibitor under the conditions of our autophagy assays did not lead to 

MAPK8/9 activation. It is therefore possible that in a different cell type, or under 

different culture conditions, MAPK8/9 could be activated and thus may contribute to the 

regulation of autophagy.  

 In conclusion, our analysis demonstrates that there is no required role for 

MAPK8/9 in starvation-induced autophagy. However, this signaling pathway can 

regulate autophagy by a conserved mechanism that leads to regulated expression of 

autophagy proteins in Drosophila [44] and mammals [45-51]. MAPK8/9-regulated gene 

expression may lead to increased autophagy, but different paradigms of MAPK8/9-

regulated gene expression could lead to reduced autophagy. For example, MAPK8/9-

regulated gene expression suppresses basal autophagy in neurons [27]. A similar 

mechanism may account for MAPK8/9-mediated repression of autophagy in hepatocytes 
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(Fig. 5). It is also possible that MAPK8/9 may promote autophagy by a non-

transcriptional mechanism mediated by BCL2 phosphorylation in some specific 

physiological or pathological conditions. Collectively, our analysis shows that the role of 

MAPK8/9 in autophagy may be context-dependent and substantially more complex than 

previously considered.   
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Materials and Methods 

Cell culture 

Primary MEFs were prepared from embryonic day 13.5 WT, mapk8
-/-

, mapk9
-/-

, Rosa-

Cre
ERT

 and Rosa-Cre
ERT

 Mapk8
LoxP/LoxP 

mapk9
-/-

 mice and cultured in Dulbecco's 

modified Eagle's medium (DMEM; Thermo Fisher Scientific, 11960077) supplemented 

with 10% bovine growth serum (BGS; Thermo Fisher Scientific, SH30541.03), 1% 

penicillin /streptomycin (Thermo Fisher Scientific, 15140122) plus 1% L-glutamine 

(Thermo Fisher Scientific, 25030081) [53]. Cre
ERT

 primary MEFs were treated (24 h) 

with 1 µM (Z)-4-hydroxytamoxifen (Millipore Sigma, H7904) in culture media at 

passage #1. Autophagy experiments were conducted on MEFs between passages #2 and 

#3.  

Immortalized WT and mapk8
-/-

 mapk9
-/-

 MEFs have been described previously 

[54]. We have also previously described trp53
-/-

 MEFs, trp53
-/-

 mapk8
-/-

 mapk9
-/-

 MEFs, 

Hras-transformed trp53
-/-

 MEFs, and Hras transformed trp53
-/-

 mapk8
-/-

 mapk9
-/-

 MEFs 

[55]. These cells were cultured in DMEM supplemented with 10% BGS, 1% penicillin 

/streptomycin, plus 1% L-glutamine.  

Primary kidney epithelial cells were isolated from ROSA-Cre
ERT

 mice or ROSA-

Cre
ERT

 Mapk8
LoxP/LoxP 

mapk9
-/-

 mice. Kidneys were digested (2 h) with 0.1% collagenase 

A (Millipore Sigma, 11088793001) plus 0.1% trypsin (Thermo Fisher Scientific, 

15090046) in DMEM with 150 mM NaCl [56]. The cells were maintained in DMEM/F-

12 media (Thermo Fisher Scientific, 11039-047) containing 10% BGS, plus 150 mM urea 
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and 150 mM NaCl. The cells were treated (24 h) with 1 µM (Z)-4-hydroxytamoxifen and 

employed for autophagy studies after 3 d.  

Primary hepatocytes were isolated from WT (Alb-Cre
-/+

) and MAPK8/9-deficient 

(Alb-Cre
-/+

 Mapk8
LoxP/LoxP 

Mapk9
LoxP/LoxP

) mice [42] using a modified 2-step perfusion 

method [57] with Hanks’ Balanced Salt Solution (HBSS; Thermo Fisher Scientific, 

14175) and Liver Digest Medium (Thermo Fisher Scientific, 17703034). Cells were 

seeded on plates pre-coated (1 h) with collagen I (Thermo Fisher Scientific, A1048301) 

in DMEM supplemented with 10% BGS, 2 mM sodium pyruvate (Thermo Fisher, 

11360070), 1 μM dexamethasone (Millipore Sigma, D4902), 100 nM insulin (Millipore 

Sigma, I0516) plus 2% penicillin/streptomycin. After attachment (2 h), the medium was 

removed and the hepatocytes were incubated (22 h) in maintenance medium (DMEM 

(4.5 g/L glucose) supplemented with 10% BGS, 0.2% bovine serum albumin (Millipore 

Sigma, A8806), 2 mM sodium pyruvate, 2% penicillin/streptomycin, 0.1 μM 

dexamethasone, and 1 nM insulin. Autophagy studies were performed within 48 h. 

Pharmacological studies of MAPK8/9 inhibition were performed by treating hepatocytes 

with 2 µM JNK-IN-8 (Millipore Sigma, 420150) or dimethyl sulfoxide (DMSO; 

Millipore Sigma, D2650).  

Autophagy studies 

Autophagy promoted by amino acid starvation was examined using cells (70% confluent) 

washed 3 times with modified Earle’s Balanced Salt Solution (EBSS; 117.24 mM NaCl, 

26.19 mM NaHCO3, 5.33 mM KCl, 0.816 mM MgCl2, 1.01 mM NaH2PO4, 1.8 mM 

CaCl2, 10.92 mM HEPES, pH 7.4, 0.224 mM sodium pyruvate) and then incubated with 

EBSS containing 5 mM glucose. Autophagy was also examined in cells treated with 
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pharmacological inhibitors of MTOR (250 nM torin 1; Tocris, 4247) and TORC1 (200 

nM rapamycin; Millipore Sigma, R8781) or under hypoxia (1.5% O2) conditions. 

Autophagic flux was examined by measuring the LC3B-II:GAPDH ratio or LC3B-

II:TUBA (tubulin alpha) ratio by immunoblot analysis, normalization of the data to the 

control condition (without autophagy induction or CQ), and calculation of the increased 

LC3B-II:GAPDH (or TUBA) ratio caused by treatment of the cells with 25 µM 

chloroquine diphosphate (CQ; Millipore Sigma, 25745) to inhibit lysosomal protein 

degradation [36].  

Immunoblot analysis 

Cell extracts were prepared using Triton lysis buffer (20 mM Tris at pH 7.4, 1% Triton 

X-100 [Millipore Sigma, X100], 10% glycerol [Millipore Sigma, G7793], 137 mM NaCl, 

2 mM EDTA [Millipore Sigma, EDS], 25 mM β-glycerophosphate [Millipore Sigma, 

G9422], 1 mM sodium orthovanadate [Millipore Sigma, S6508], 1 mM 

phenylmethylsulfonyl fluoride [Millipore Sigma, P7626], 10 µg/mL aprotinin [Millipore 

Sigma, A6106] plus leupeptin [Millipore Sigma, L2884]). Extracts (20-40 μg of protein) 

were examined by protein immunoblot analysis by probing with antibodies described in 

antibodies section. Immunocomplexes were detected using IRDye-conjugated secondary 

antibodies to mouse IgG (LI-COR Biosciences, 925-68070) and rabbit IgG (LICOR 

Biosciences, 925-32211) and quantified by using the Odyssey infrared imaging system 

(LI-COR Biosciences). 

Antibodies 

We obtained antibodies to AKT (Cell Signaling Technology, 9272), p-Thr308 AKT (Cell 

Signaling Technology, 5106), p-Ser473 AKT (Cell Signaling Technology, 9271), 
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GAPDH (Santa Cruz Biotechnology, sc-25778), LC3B (Cell Signaling Technology, 

2775), MAPK8/9 (R&D Systems, AF1387), p-Thr183/Tyr185 MAPK8/9 (Cell Signaling 

Technology, 9255 [Fig. 3] and Cell Signaling Technology, 4668 [Figs. S8 and S9]), 

RPS6KB1 (Cell Signaling Technology, 9202), p-Thr389 RPS6KB1 (Cell Signaling 

Technology, 9206), SQSTM1 (Progen, GP62-C), and TUBA (Millipore Sigma, T5168), 

from the indicated suppliers.  

LC3B puncta formation 

Cells were transduced with a lentiviral vector that expresses GFP-LC3B according to the 

manufacturer’s instructions (LentiBrite GFP-LC3 Lentiviral Biosensor; Millipore Sigma, 

17-10193). The cells were plated on a glass culture dish and incubated with culture 

media, EBSS containing 5mM glucose, or culture media supplemented with 250 nM torin 

1. Live cell images were acquired at 0, 2, and 4 h using Leica TCS SP2 confocal 

microscope and Leica Confocal Software. 

Statistical Analysis 

Data are presented as the mean and standard error (SEM). Statistical analysis was 

performed using two-tailed Student’s t-test for pair-wise comparisons and two-way 

ANOVA for multiple group comparisons as indicated at the figure legends. 
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Figure 1. Autophagy caused by MTOR inhibition does not require MAPK8/9 in 

immortalized MEFs. (A) The amount of RPS6KB1, p-Thr389 RPS6KB1, and TUBA 

(tubulin alpha) in WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation without 

or with 250 nM torin 1 (2 or 4 h) was examined by immunoblot analysis. (B) WT and 

mapk8
-/-

 mapk9
-/-

 immortalized MEFs were transduced with a lentivirus vector that 

expresses GFP-LC3B. Puncta formation following incubation of the cells with 250 nM 

torin 1 (2 and 4 h) was examined by fluorescence microcopy. Scale bar: 30 µm. (C) 

LC3B and GAPDH (glyceraldehyde-3-phosphate dehydrogenase) expression by WT and 

mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation (2 h) without or with 250 nM torin 

1 in the absence or presence of 25 µM chloroquine (CQ) was examined by immunoblot 

analysis. The LC3B-II:GAPDH ratios were normalized to the mean of WT control 

condition (first lane). The "Change in MAP1LC3B-II" was calculated by subtracting 

MAP1LC3B-II:GAPDH (media+CQ condition) from MAP1LC3B-II:GAPDH (torin 

1+CQ condition). The data presented represent the mean ± SEM; n=3 independent 

experiments; *, p<0.05; **, p<0.01; ***, p<0.001; ****, p<0.0001. Two-way ANOVA 

was used for the analysis of LC3B-II expression and Student’s t-test is used for the flux 

analysis. (D) The amount of SQSTM1 and TUBA in WT and mapk8
-/-

 mapk9
-/-

 

immortalized MEFs after incubation with 250 nM torin 1 (2 or 4 h) was examined by 

immunoblot analysis. The SQSTM1:TUBA ratio was quantified and normalized to 

SQSTM1 expression in WT cells treated without torin 1 (mean ± SEM; n=3 independent 

experiments; **, p<0.01 (two-way ANOVA). (E) RPS6KB1, p-Thr389 RPS6KB1, AKT, 

p-Thr308 AKT, p-Ser473 AKT, and GAPDH expression by WT and mapk8
-/-

 mapk9
-/-
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immortalized MEFs after incubation (2 or 4 h) without or with 200 nM rapamycin was 

examined by immunoblot analysis. (F) LC3B and TUBA expression by WT and mapk8
-/-

 

mapk9
-/-

 immortalized MEFs after incubation (2 h) without or with 200 nM rapamycin in 

the presence or absence of 25 µM chloroquine (CQ) was examined by immunoblot 

analysis. The LC3B-II:TUBA ratios were normalized to the mean of WT control (first 

lane). The data presented represent the mean ± SEM; n=3 independent experiments; *, 

p<0.05; **, p<0.01; ***, p<0.001. Two-way ANOVA was used for the analysis of 

LC3B-II expression and Student’s t-test was used for the flux analysis.  

 

Figure 2. Autophagy caused by starvation does not require MAPK8/9 in immortalized 

MEFs. (A) RPS6KB1, p-Thr389 RPS6KB1, and TUBA expression by WT and mapk8
-/-

 

mapk9
-/-

 immortalized MEFs after incubation with EBSS containing 5mM glucose (2 or 4 

h) was examined by immunoblot analysis. (B) WT and mapk8
-/-

 mapk9
-/-

 immortalized 

MEFs were transduced with a lentivirus vector that expresses GFP-LC3B. Puncta 

formation following incubation with EBSS containing 5 mM glucose (2 h) was examined 

by fluorescence microcopy. Scale bar: 30 µm. (C) LC3B and GAPDH in WT and mapk8
-

/-
 mapk9

-/-
 immortalized MEFs after incubation (2 h) in medium or with EBSS containing 

5 mM glucose in the presence or absence of 25 µM chloroquine (CQ) was examined by 

immunoblot analysis. The LC3B-II:GAPDH ratios were normalized to the average of WT 

control condition (first lane). The data presented represent the mean ± SEM; n=3 

independent experiments; *, p<0.05; **, p<0.01; ***; p<0.001; ****; p<0.0001. Two-

way ANOVA was used for the analysis of LC3B-II expression and Student’s t-test was 

used for the flux analysis. (D) The amount of SQSTM1 and GAPDH in WT and mapk8
-/-
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mapk9
-/-

 immortalized MEFs after incubation with EBSS containing 5 mM glucose (2 or 

4 h) was examined by immunoblot analysis. The SQSTM1:GAPDH ratio was quantified 

and normalized to WT cells treated without EBSS (mean ± SEM; n=3 independent 

experiments); *, p<0.05; **, p<0.01; ***; p<0.001 (two-way ANOVA).  

 

 

Figure 3. Effect of starvation and MTOR inhibition on MAPK8/9 activation is not 

sufficient to cause autophagy. (A and B) MAPK8/9 activation in immortalized MEFs 

was examined by immunoblot analysis of p-Thr183/Tyr185 MAPK8/9, MAPK8/9, and 

GAPDH in cells after incubation (2 or 4 h) with EBSS containing 5 mM glucose (A) or 

250 nM torin 1 (B). Lanes 1 and 2 represent positive and negative controls: lysates of WT 

MEFs exposed to 60 J/m
2
 UV and mapk8

-/-
 mapk9

-/-
 MEFs, respectively. (C) WT and 

mapk8
-/-

 mapk9
-/-

 immortalized MEFs were exposed to UV radiation (60 J/m
2
) and cell 

extracts were prepared at 45 min post-irradiation. The expression of LC3B, p-

Thr183/Tyr185 MAPK8/9, MAPK8/9, and GAPDH was examined by immunoblot 

analysis.  

 

 

Figure 4. Autophagy caused by starvation does not require MAPK8/9 in primary MEFs. 

(A) (Z)-4-Hydroxytamoxifen-treated primary Rosa-Cre
ERT

 (WT) MEFs and Rosa-Cre
ERT

 

Mapk8
LoxP/LoxP 

mapk9
-/-

 MEFs were examined by immunoblot analysis by probing with 

antibodies to MAPK8/9 and TUBA. (B) WT and mapk8
-/-

 mapk9
-/-

 primary MEFs were 

transduced with a lentivirus vector that expresses GFP-LC3B. Puncta formation 
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following incubation with EBSS containing 5 mM glucose (2 and 4 h) was examined by 

fluorescence microcopy. Scale bar: 25 µm. (C) LC3B and GAPDH expression by WT 

and mapk8
-/-

 mapk9
-/-

 primary MEFs after incubation (2 h) in medium or with EBSS 

containing 5 mM glucose in the presence or absence of 25 µM chloroquine (CQ) was 

examined by immunoblot analysis. The LC3B-II:GAPDH ratios were normalized to the 

mean of WT control (first lane). The data presented represent the mean ± SEM; n=3 

independent experiments; *, p<0.05. Two-way ANOVA was used for the analysis of 

LC3B-II expression and Student’s t-test was used for the flux analysis. (D) The amount 

of SQSTM1 and TUBA in WT and mapk8
-/-

 mapk9
-/-

 primary MEFs after incubation with 

EBSS containing 5 mM glucose (2 h) was examined by immunoblot analysis. The 

SQSTM1:TUBA ratio was quantified and normalized to SQSTM1 expression in WT 

non-starved cells (mean ± SEM; n=3 independent experiments). (E) MAPK8/9 activation 

in WT and mapk8
-/-

 mapk9
-/-

 primary MEFs was examined by immunoblot analysis of p-

Thr183/Tyr185 MAPK8/9, MAPK8/9, and GAPDH after incubation (2 h) with media or 

EBSS containing 5 mM glucose. WT MEFs exposed to UV (60 J/m
2
) and mapk8

-/-
 

mapk9
-/-

 represent positive and negative controls. (F) RPS6KB1, p-Thr389 RPS6KB1, 

and TUBA in WT and mapk8
-/-

 mapk9
-/-

 primary MEFs after incubation (2 h) with EBSS 

containing 5 mM glucose was examined by immunoblot analysis. 

 

Figure 5. MAPK8/9 suppresses autophagy in primary hepatocytes. (A) LC3B and TUBA 

in WT and mapk8
-/-

 mapk9
-/-

 primary hepatocytes after incubation (6 h) with medium or 

EBSS containing 5 mM glucose in the presence or absence of 25 µM chloroquine (CQ) 

was examined by immunoblot analysis. (B) The amount of SQSTM1 and TUBA in WT 
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and mapk8
-/-

 mapk9
-/-

 primary hepatocytes was examined by immunoblot analysis. (C and 

D) WT primary hepatocytes were incubated (6 h) without or with 2 µM JNK-IN-8. LC3B 

and TUBA in WT primary hepatocytes in the presence or absence of 25 µM CQ was 

examined by immunoblot analysis (C). The amount of SQSTM1 and TUBA was 

examined by immunoblot analysis (D).  
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Figure S1. Autophagy induction by MTOR inhibition does not require MAPK8/9 in 

MEFs. The figure presents 2 independent replicates of the immunoblot experiments 

presented in Figure 1. (A) The amount of RPS6KB1, p-Thr389 RPS6KB1, and TUBA in 

WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation without or with 250 nM 

torin 1 (2 or 4 h) was examined by immunoblot analysis. (B) LC3B and GAPDH 

expression by WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation (2 h) 

without or with 250 nM torin 1 in the absence or presence of 25 µM chloroquine (CQ) 

was examined by immunoblot analysis. (C) The amount of SQSTM1 and TUBA in WT 

and mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation with 250 nM torin 1 (2 or 4 h) 

was examined by immunoblot analysis. (D) LC3B and TUBA expression by WT and 

mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation (2 h) without or with 200 nM 

rapamycin in the presence or absence of 25 µM chloroquine (CQ) was examined by 

quantitative immunoblot analysis.  

 

Figure S2. Starvation-induced autophagy does not require MAPK8/9 in MEFs. The 

figure presents 2 independent replicates of the immunoblot experiments presented in 

Figure 2. (A) The amount of RPS6KB1, p-Thr389 RPS6KB1, and TUBA in WT and 

mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation in culture media or EBSS 

containing 5 mM glucose (2 or 4 h) was examined by immunoblot analysis. (B) LC3B 

and GAPDH expression by WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs after 

incubation (2 h) in culture media or EBSS/5 mM glucose without and with 25 µM 

chloroquine (CQ) was examined by immunoblot analysis. (C) The amount of SQSTM1 
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and GAPDH in WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs after incubation in culture 

media or EBSS containing 5 mM glucose (2 or 4 h) was examined by immunoblot 

analysis.  

 

Figure S3. Effect of starvation and MTOR inhibition on MAPK8/9 activation is not 

sufficient to cause autophagy. The figure presents two independent replicates of the 

immunoblot experiments presented in Figure 3. (A and B) MAPK8/9 activation in 

immortalized MEFs was examined by immunoblot analysis of p-Thr183/Tyr185 

MAPK8/9, MAPK8/9, and GAPDH in cells after incubation (2 or 4 h) with EBSS 

containing 5 mM glucose (A) or 250 nM torin 1 (B). Lanes 1 and 2 represent positive and 

negative controls: lysates of WT MEFs exposed to 60 J/m
2
 UV and mapk8

-/-
 mapk9

-/-
 

MEFs, respectively. (C) Immunoblot analysis of LC3B, p-Thr183/Tyr185 MAPK8/9, 

MAPK8/9, and GAPDH in WT and mapk8
-/-

 mapk9
-/-

 immortalized MEFs before or after 

UV irradiation (60 J/m
2
). Cell extracts were prepared 45 min post-irradiation.  

 

Figure S4. Starvation-induced autophagy does not require MAPK8/9 in primary MEFs. 

The figure presents two independent replicates of the immunoblot experiments presented 

in Figure 4. (A) LC3B and GAPDH expression by WT and mapk8
-/-

 mapk9
-/-

 primary 

MEFs after incubation (2 h) in culture media or EBSS containing 5 mM glucose without 

and with 25 µM chloroquine (CQ) was examined by immunoblot analysis. (B) The 

amount of SQSTM1 and TUBA in WT and mapk8
-/-

 mapk9
-/-

 primary MEFs after 

incubation in culture media or EBSS containing 5 mM glucose (2 h) was examined by 
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immunoblot analysis. (C) The amount of RPS6KB1, p-Thr389 RPS6KB1, and TUBA in 

WT and mapk8
-/-

 mapk9
-/-

 primary MEFs after incubation in culture media or EBSS/5 

mM glucose (2 h) was examined by immunoblot analysis.  

 

 

Figure S5. Torin 1-induced autophagy in primary MEFs does not require MAPK8/9. (A) 

The amount of RPS6KB1, p-Thr389 RPS6KB1, and TUBA in WT and mapk8
-/-

 mapk9
-/-

 

primary MEFs after incubation with 250 nM torin 1 (2 or 4 h) was examined by 

immunoblot analysis. (B) WT and mapk8
-/-

 mapk9
-/-

 primary MEFs were transduced with 

a lentivirus vector that expresses GFP-LC3B. Puncta formation following incubation with 

250 nM torin 1 (2 and 4 h) was examined by fluorescence microcopy. Scale bar: 25 µm. 

(C) LC3B and GAPDH expression by WT and mapk8
-/-

 mapk9
-/-

 primary MEFs after 

incubation (2 h) without or with 250 nM torin 1 in the presence or absence of 25 µM 

chloroquine (CQ) was examined by immunoblot analysis. The LC3B-II:GAPDH ratios 

were normalized to the average of WT control condition (first lane). (D) The amount of 

SQSTM1 and TUBA in WT and mapk8
-/-

 mapk9
-/-

 primary MEFs after incubation with 

250 nM Torin 1 (2 or 4 h) was examined by immunoblot analysis. The SQSTM1:TUBA 

ratio was quantified.  

 

 

Figure S6. MAPK8 and MAPK9 are not required for starvation-induced autophagy in 

primary MEFs. (A) The amount of RPS6KB1, p-Thr389 RPS6KB1, and TUBA in WT, 
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mapk8
-/-

, and mapk9
-/-

 primary MEFs after incubation in culture media or EBSS/5 mM 

glucose (2 h) was examined by immunoblot analysis. (B) WT, mapk8
-/-

, and mapk9
-/-

 

primary MEFs were transduced with a lentivirus vector that expresses GFP-LC3B. 

Puncta formation following incubation of the cells in EBSS containing 5 mM glucose 

(upper panels) or in media with 250 nM torin 1 (lower panels) was examined by 

fluorescence microcopy. Scale bar: 25 µm. (C) The amount of SQSTM1 and TUBA in 

WT, mapk8
-/-

, and mapk9
-/-

 primary MEFs after incubation in culture media or EBSS 

containing 5 mM glucose (2 h) was examined by immunoblot analysis. (D) LC3B and 

GAPDH expression by WT, mapk8
-/-

, and mapk9
-/-

 primary MEFs after incubation (2 h) 

in culture media or EBSS containing 5 mM glucose without and with 25 µM chloroquine 

(CQ) was examined by immunoblot analysis.  

 

 

Figure S7. Starvation-induced autophagy does not require MAPK8/9 in primary kidney 

epithelial cells. (A) LC3B and TUBA expression by WT and mapk8
-/-

 mapk9
-/-

 primary 

epithelial cells after incubation (2 h) without or with EBSS containing 5 mM glucose in 

the presence or presence of 25 µM chloroquine (CQ) was examined by immunoblot 

analysis. The LC3B-II:TUBA ratios were normalized to the average of WT control 

condition (first lane). The data presented represent the mean ± SEM; n=3 independent 

experiments; *, p<0.05. Two-way ANOVA was used for the analysis of LC3B-II 

expression and Student’s t-test is used for the flux analysis. (B) The amount of SQSTM1 

and TUBA in WT and mapk8
-/-

 mapk9
-/-

 primary epithelial cells after incubation with 

EBSS containing 5 mM glucose (2 h) was examined by immunoblot analysis. The 
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SQSTM1:TUBA ratio was quantified and normalized to SQSTM1 expression in WT 

cells treated without torin 1. Mean ± SEM; n=3 independent experiments; *, p<0.05 

(two-way ANOVA).  

 

 

Figure S8. MAPK8/9 deficiency does not affect autophagy in Hras-transformed MEFs. 

(A) Control trp53
-/-

 MEFs (Ras
-
) and Hras-transformed (Ras

+
) trp53

-/-
 MEFs without 

(WT) and with ablation of the Mapk8 and Mapk9 genes were examined by immunoblot 

analysis by probing with antibodies to p-Thr183/Tyr185 MAPK8/9, MAPK8/9, and 

GAPDH. Note that the p-Thr183/Tyr185 MAPK8/9 antibody cross-reacts with p-

Thr202/Tyr204 MAPK3. The data presented are the results of 2 independent 

experiments. (B) LC3B and TUBA expression by WT and mapk8
-/-

 mapk9
-/-

 

immortalized MEFs after incubation (24 h) without or with 25 µM chloroquine (CQ) was 

examined by immunoblot analysis. The LC3B-II:TUBA ratios were normalized to the 

mean of the WT control condition (first lane). The data presented represent the mean ± 

SEM; n=2 independent experiments.  

 

Figure S9. Effect of MAPK8/9 deficiency on autophagy under hypoxia conditions. (A) 

Primary trp53
-/-

 MEFs (-Ras) and Hras-transformed (+Ras) trp53
-/-

 MEFs without (WT) 

and with ablation of the Mapk8 and Mapk9 genes were cultured (24 h) under hypoxia 

conditions (1.5% O2) and examined by immunoblot analysis by probing with antibodies 

to p-Thr183/Tyr185 MAPK8/9, MAPK8/9, and GAPDH. Note that the p-Thr183/Tyr185 
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MAPK8/9 antibody cross-reacts with p-Thr202/Tyr204 MAPK3. The data presented are 

the results of 2 independent experiments. (B) The amount of LC3B and TUBA in cells 

incubated (24 h) without or with 25 µM chloroquine (CQ) was examined by immunoblot 

analysis. The LC3B-II:TUBA ratios were normalized to the mean of the WT control 

condition (first lane). The data presented represent the mean ± SEM; n=2 independent 

experiments; *, p<0.05; **, p<0.01; ***, p<0.001 (two-way ANOVA).  

 

Figure S10. MAPK8/9 suppresses basal autophagy in primary hepatocytes. The figure 

presents independent replicates of the immunoblot experiments presented in Figure 5. (A) 

LC3B and TUBA in WT and mapk8
-/-

 mapk9
-/-

 primary hepatocytes after incubation (6 h) 

with medium or EBSS containing 5 mM glucose in the presence or absence of 25 µM 

chloroquine (CQ) was examined by immunoblot analysis. (B) The amount of SQSTM1 

and TUBA in WT and mapk8
-/-

 mapk9
-/-

 primary hepatocytes was examined by 

immunoblot analysis. (C and D) WT primary hepatocytes were incubated (6 h) without or 

with 2 µM JNK-IN-8. LC3B and TUBA in WT primary hepatocytes in the presence or 

absence of 25 µM CQ was examined by immunoblot analysis (C). The amount of 

SQSTM1 and TUBA was examined by immunoblot analysis (D).  
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure S1 
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Figure S2 
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Figure S3 
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Figure S4 
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Figure S5 
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Figure S7 
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Figure S8 
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Figure S9 
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Figure S10 
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