6,646 research outputs found

    Reaction rate calculation with time-dependent invariant manifolds

    Get PDF
    The identification of trajectories that contribute to the reaction rate is the crucial dynamical ingredient in any classical chemical reactivity calculation. This problem often requires a full scale numerical simulation of the dynamics, in particular if the reactive system is exposed to the influence of a heat bath. As an efficient alternative, we propose here to compute invariant surfaces in the phase space of the reactive system that separate reactive from nonreactive trajectories. The location of these invariant manifolds depends both on time and on the realization of the driving force exerted by the bath. These manifolds allow the identification of reactive trajectories simply from their initial conditions, without the need of any further simulation. In this paper, we show how these invariant manifolds can be calculated, and used in a formally exact reaction rate calculation based on perturbation theory for any multidimensional potential coupled to a noisy environment

    Projet de conversion et d'unification des titres des Series B. C. & D. de la Dette Ottomane

    Get PDF
    Taha Toros Arşivi, Dosya No: 71-Duyun-u Umumiyeİstanbul Kalkınma Ajansı (TR10/14/YEN/0033) İstanbul Development Agency (TR10/14/YEN/0033

    Bubble concentration on spheres for supercritical elliptic problems

    Full text link
    We consider the supercritical Lane-Emden problem (P_\eps)\qquad -\Delta v= |v|^{p_\eps-1} v \ \hbox{in}\ \mathcal{A} ,\quad u=0\ \hbox{on}\ \partial\mathcal{A} where A\mathcal A is an annulus in \rr^{2m}, m2m\ge2 and p_\eps={(m+1)+2\over(m+1)-2}-\eps, \eps>0. We prove the existence of positive and sign changing solutions of (P_\eps) concentrating and blowing-up, as \eps\to0, on (m1)(m-1)-dimensional spheres. Using a reduction method (see Ruf-Srikanth (2010) J. Eur. Math. Soc. and Pacella-Srikanth (2012) arXiv:1210.0782)we transform problem (P_\eps) into a nonhomogeneous problem in an annulus \mathcal D\subset \rr^{m+1} which can be solved by a Ljapunov-Schmidt finite dimensional reduction

    A Concept for Using Combined Multimodal Queries in Digital Music Libraries

    Get PDF
    Περιέχει το πλήρες κείμενοIn this paper, we propose a concept for using combined multimodal queries in the context of digital music libraries. Whereas usual mechanisms for content-based music retrieval only consider a single query mode, such as query-by-humming, full-text lyrics-search or query-by-example using short audio snippets, our proposed concept allows to combine those different modalities into one integrated query. Our particular contributions consist of concepts for query formulation, combined content-based retrieval and presentation of a suitably ranked result list. The proposed concepts have been realized within the context of the PROBADO Music Repository and allow for music retrieval based on combining full-text lyrics search and score-based query-by-example search

    Finite-barrier corrections for multidimensional barriers in colored noise

    Get PDF
    The usual identification of reactive trajectories for the calculation of reaction rates requires very timeconsuming simulations, particularly if the environment presents memory effects. In this paper, we develop a method that permits the identification of reactive trajectories in a system under the action of a stochastic colored driving. This method is based on the perturbative computation of the invariant structures that act as separatrices for reactivity. Furthermore, using this perturbative scheme, we have obtained a formally exact expression for the reaction rate in multidimensional systems coupled to colored noisy environments

    An algorithm for calculating the Lorentz angle in silicon detectors

    Full text link
    Future experiments will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is affected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. In this paper measurements of the Lorentz angle of electrons and holes before and after irradiation are reviewed and compared with a simple algorithm to compute the Lorentz angle.Comment: 13 pages, 7 figures, final version accepted by NIMA. Mainly clarifications included and slightly shortene

    Reaction rate calculation with time-dependent invariant manifolds

    Get PDF
    The identification of trajectories that contribute to the reaction rate is the crucial dynamical ingredient in any classical chemical reactivity calculation. This problem often requires a full scale numerical simulation of the dynamics, in particular if the reactive system is exposed to the influence of a heat bath. As an efficient alternative, we propose here to compute invariant surfaces in the phase space of the reactive system that separate reactive from nonreactive trajectories. The location of these invariant manifolds depends both on time and on the realization of the driving force exerted by the bath. These manifolds allow the identification of reactive trajectories simply from their initial conditions, without the need of any further simulation. In this paper, we show how these invariant manifolds can be calculated, and used in a formally exact reaction rate calculation based on perturbation theory for any multidimensional potential coupled to a noisy environment

    The geometry of transition states: How invariant manifolds determine reaction rates

    Get PDF
    Over the last years, a new geometrical perspective on transition state theory has been developed that provides a deeper insight on the reaction mechanisms of chemical systems. This new methodology is based on the identification of the invariant structures that organize the dynamics at the top of the energetic barrier that separates reactants and products. Moreover, it has allowed to solve, or at least circumvent, the recrossing-free problem in rate calculations. In this paper, we will discuss which kind of objects determine the reaction dynamics in the presence of dilute, dense and condensed phase baths

    Finite size effects on transport coefficients for models of atomic wires coupled to phonons

    Full text link
    We consider models of quasi-1-d, planar atomic wires consisting of several, laterally coupled rows of atoms, with mutually non-interacting electrons. This electronic wire system is coupled to phonons, corresponding, e.g., to some substrate. We aim at computing diffusion coefficients in dependence on the wire widths and the lateral coupling. To this end we firstly construct a numerically manageable linear collision term for the dynamics of the electronic occupation numbers by following a certain projection operator approach. By means of this collision term we set up a linear Boltzmann equation. A formula for extracting diffusion coefficients from such Boltzmann equations is given. We find in the regime of a few atomic rows and intermediate lateral coupling a significant and non-trivial dependence of the diffusion coefficient on both, the width and the lateral coupling. These results, in principle, suggest the possible applicability of such atomic wires as electronic devices, such as, e.g., switches.Comment: 9 pages, 5 figures, accepted for publication in Eur. Phys. J.
    corecore