4,084 research outputs found

    Dynamic modeling of fluid transmission lines of the DSN 70-meter antennas by using a lumped parameter model

    Get PDF
    Fluid transmission lines and fittings were found to significantly affect the dynamic and steady state operation of the engineering system in which they are incorporated. Therefore, a better understanding of the operation of a system can be obtained by including the performance of the transmission lines and fittings within the system model. The most accurate model of a transmission line or fitting is obtained by using a distributed parameter model. However, a distributed parameter model tends to be very complex. This complexity can be avoided without significant loss of model accuracy by using a lumped parameter model when the length of the fluid path through the transmission line or fitting is short. This article develops a lumped parameter model for short fluid transmission lines and fittings, describes the conditions under which the model is valid, and presents the model parameters associated with the servo hydraulic system of the Deep Space Network (DSN) 70-meter antennas

    Dynamic modeling of the servovalves incorporated in the servo hydraulic system of the 70-meter DSN antennas

    Get PDF
    As the pointing accuracy and service life requirements of the DSN 70 meter antenna increase, it is necessary to gain a more complete understanding of the servo hydraulic system in order to improve system designs to meet the new requirements. A mathematical model is developed for the servovalve incorporated into the hydraulic system of the 70 meter antenna and uses experimental data to verify the validity of the model and to identify the model parameters

    Tuning carrier concentration in a superacid treated MoS2_2 monolayer

    Full text link
    The effect of bis(trifluoromethane) sulfonimide (TFSI, superacid) treatment on the optical properties of MoS2_2 monolayers is investigated by means of photoluminescence, reflectance contrast and Raman scattering spectroscopy employed in a broad temperature range. It is shown that when applied multiple times, the treatment results in progressive quenching of the trion emission/absorption and in the redshift of the neutral exciton emission/absorption associated with both the A and B excitonic resonances. Based on this evolution, a trion complex related to the B exciton in monolayer MoS2_2 is unambiguously identified. A defect-related emission observed at low temperatures also disappears from the spectrum as a result of the treatment. Our observations are attributed to effective passivation of defects on the MoS2_{2} monolayer surface. The passivation reduces the carrier density, which in turn affects the out-of-plane electric field in the sample. The observed tuning of the carrier concentration strongly influences also the Raman scattering in the MoS2_2 monolayer. An enhancement of Raman scattering at resonant excitation in the vicinity of the A neutral exciton is clearly seen for both the out-of-plane A1â€Č_1^{'} and in-plane Eâ€Č^{'} modes. On the contrary, when the excitation is in resonance with a corresponding trion, the Raman scattering features become hardly visible. These results confirm the role of the excitonic charge state plays in the resonance effect of the excitation energy on the Raman scattering in transition metal dichalcogenides.Comment: 8 pages, 4 figure

    Modeling and analysis of the DSS-14 antenna control system

    Get PDF
    An improvement of pointing precision of the DSS-14 antenna is planned for the near future. In order to analyze the improvement limits and to design new controllers, a precise model of the antenna and the servo is developed, including a finite element model of the antenna structure and detailed models of the hydraulic drives and electronic parts. The DSS-14 antenna control system has two modes of operation: computer mode and precision mode. The principal goal of this investigation is to develop the model of the computer mode and to evaluate its performance. The DSS-14 antenna computer model consists of the antenna structure and drives in azimuth and elevation. For this model, the position servo loop is derived, and simulations of the closed-loop antenna dynamics are presented. The model is significantly different from that for the 34-m beam-waveguide antennas

    A Population of Short-Period Variable Quasars from PTF as Supermassive Black Hole Binary Candidates

    Get PDF
    Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be common in galactic nuclei, as a result of frequent galaxy mergers. Hydrodynamical simulations of circumbinary discs predict strong periodic modulation of the mass accretion rate on time-scales comparable to the orbital period of the binary. As a result, SMBHBs may be recognized by the periodic modulation of their brightness. We conducted a statistical search for periodic variability in a sample of 35,383 spectroscopically confirmed quasars in the photometric database of the Palomar Transient Factory (PTF). We analysed Lomb-Scargle periodograms and assessed the significance of our findings by modeling each individual quasar's variability as a damped random walk (DRW). We identified 50 quasars with significant periodicity beyond the DRW model, typically with short periods of a few hundred days. We find 33 of these to remain significant after a re-analysis of their periodograms including additional optical data from the intermediate-PTF and the Catalina Real-Time Transient Survey (CRTS). Assuming that the observed periods correspond to the redshifted orbital periods of SMBHBs, we conclude that our findings are consistent with a population of unequal-mass SMBHBs, with a typical mass ratio as low as q = M2/M1 ~ 0.01.Comment: MNRAS (accepted), new section 4.

    Fine structure of K\mathrm{K}-excitons in multilayers of transition metal dichalcogenides

    Full text link
    Reflectance and magneto-reflectance experiments together with theoretical modelling based on the k⋅p\mathbf{k\cdot p} approach have been employed to study the evolution of direct bandgap excitons in MoS2_2 layers with a thickness ranging from mono- to trilayer. The extra excitonic resonances observed in MoS2_2 multilayers emerge as a result of the hybridization of Bloch states of each sub-layer due to the interlayer coupling. The properties of such excitons in bi- and trilayers are classified by the symmetry of corresponding crystals. The inter- and intralayer character of the reported excitonic resonances is fingerprinted with the magneto-optical measurements: the excitonic gg-factors of opposite sign and of different amplitude are revealed for these two types of resonances. The parameters describing the strength of the spin-orbit interaction are estimated for bi- and trilayer MoS2_2.Comment: 14 pages, 10 figure

    Neutral and charged dark excitons in monolayer WS2_2

    Full text link
    Low temperature and polarization resolved magneto-photoluminescence experiments are used to investigate the properties of dark excitons and dark trions in a monolayer of WS2_2 encapsulated in hexagonal BN (hBN). We find that this system is an nn-type doped semiconductor and that dark trions dominate the emission spectrum. In line with previous studies on WSe2_2, we identify the Coulomb exchange interaction coupled neutral dark and grey excitons through their polarization properties, while an analogous effect is not observed for dark trions. Applying the magnetic field in both perpendicular and parallel configurations with respect to the monolayer plane, we determine the g-factor of dark trions to be g∌g\sim-8.6. Their decay rate is close to 0.5 ns, more than 2 orders of magnitude longer than that of bright excitons.Comment: 6 pages, 6 figures, supplemental materia

    Impact of environment on dynamics of exciton complexes in a WS2 monolayer

    Get PDF
    Scientific curiosity to uncover original optical properties and functionalities of atomically thin semiconductors, stemming from unusual Coulomb interactions in the two-dimensional geometry and multi-valley band structure, drives the research on monolayers of transition metal dichalcogenides (TMDs). While recent works ascertained the exotic energetic schemes of exciton complexes in TMDs, we here infer their unusual coherent dynamics occurring on subpicosecond time scale. The dynamics is largely affected by the disorder landscape on the submicron scale, thus can be uncovered using four-wave mixing in the frequency domain, which enables microscopic investigations and imaging. Focusing on a WS2 monolayer, we observe that exciton coherence is lost primarily due to interaction with phonons and relaxation processes towards optically dark excitonic states. Notably, when temperature is low and disorder weak, excitons large coherence volume results in enhanced oscillator strength, allowing to reach the regime of radiatively limited dephasing. Additionally, we observe long valley coherence for the negatively charged exciton complex. We therefore elucidate the crucial role of exciton environment in the TMDs on its dynamics and show that revealed mechanisms are ubiquitous within this family

    Volume Effects on the Glass Transition Dynamics

    Full text link
    The role of jamming (steric constraints) and its relationship to the available volume is addressed by examining the effect that certain modifications of a glass-former have on the ratio of its isochoric and isobaric activation enthalpies. This ratio reflects the relative contribution of volume (density) and temperature (thermal energy) to the temperature-dependence of the relaxation times of liquids and polymers. We find that an increase in the available volume confers a stronger volume-dependence to the relaxation dynamics, a result at odds with free volume interpretations of the glass transition.Comment: 9 pages 5 figure

    Gravitational wave source populations: Disentangling an AGN component

    Full text link
    The astrophysical origin of the over 90 compact binary mergers discovered by the LIGO and Virgo gravitational wave observatories is an open question. While the unusual mass and spin of some of the discovered objects constrain progenitor scenarios, the observed mergers are consistent with multiple interpretations. A promising approach to solve this question is to consider the observed distributions of binary properties and compare them to expectations from different origin scenarios. Here we describe a new hierarchical population analysis framework to assess the relative contribution of different formation channels simultaneously. For this study we considered binary formation in AGN disks along with phenomenological models, but the same framework can be extended to other models. We find that high-mass and high-mass-ratio binaries appear more likely to have an AGN origin compared to the same origin as lower-mass events. Future observations of high-mass black hole mergers could further disentangle the AGN component from other channels.Comment: 7 pages, 4 figures, and 1 tabl
    • 

    corecore