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Reducing the Net Torque and Flow Ripple Effects of

Multiple Hydraulic Piston Motor Drives
R. D. Bartos

GroundAntennasand Facilities Engineering Section

The torque and flow ripple effects which result when multiple hydraulic motors

are used to drive a single motion of a mechanical device can significantly affect

the way in which the device performs. This article presents a mathematical model

describing the torque and flow ripple effects of a bent-axis hydraulic piston motor.
The model is used to show how the ripple magnitude can be reduced when multiple

motors are used to drive a motion. A discussion of the hydraulic servo system of the
70-m antennas located within the Deep Space Network is included to demonstrate

the application of the concepts presented.

I. Introduction

Multiple bent-axis hydraulic piston motors are fre-

quently used to drive mechanical devices because they are

capable of providing high torque while being physically
small and lightweight. The output torque and flow rate of

a bent-axis hydraulic piston motor vary with the angular

position of a hydraulic motor shaft. Because most con-

trollers are designed without regard for these variations

in output torque and fluid flow rates, the performance of

some machines may be significantly less than expected.
This article presents a mathematical model for the output

torque and fluid flow rate of a bent-axis hydraulic piston

motor. This model is subsequently used to derive a method
of reducing the torque and flow rate variations in hydraulic

systems where multiple hydraulic motors are used to drive

a single device. A glossary is provided in the Appendix.

II. Reduction of Torque and Flow

Ripple Effects

When multiple bent-axis hydraulic piston motors are

used to drive a single motion of a mechanical device, the

resultant magnitude of the torque and flow ripple expe-

rienced by the device is significantly affected by how the
relative angle between the reference piston and the valve

plate within each motor is phased with the corresponding

relative angles of the other hydraulic motors. The conven-

tion in this article for defining the angle between the ref-

erence motor piston and the valve plate is shown in Fig. 1.
This section describes how the resultant torque and flow

ripple can be reduced by properly phasing the hydraulic

motors when multiple motors are used to drive a device.

A. Motor Torque

The analysis of the effects of motor phasing on the net

torque ripple delivered to a device begins with the equation

for the torque generated by the pressure forces acting on

the pistons of a single bent-axis hydraulic piston motor,

which is given by [1],

?t

D Z Pi cos Oi
TP = 7"£ i=a

(1)
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where

2_r(i- 1)
0i = 01 Of- (2)

Pi = PA if cos 01 > 0 (3)

Pi = PB if cos Oi < 0 (4)

j = motor index number

Pij = the pressure acting on piston i in motor j

¢1j = the phase angle of the first piston in motor j

Oij = the angle of piston i in motor j

By using Eqs. (6) through (10), the maximum torque

ripple is determined to occur when

k = O, +-1, 4-2, 4-3 .... (5) ¢ij=0 j = 1,2,3,...rn (11)

The variables are defined as

D = motor displacement per revolution

k = integer

n = the number of pistons

PA = pressure at motor port A

PB = pressure at motor port B

/9/ = pressure acting on piston i

0i = angle of the ith piston with respect to the valve
plate, as shown in Fig. 1.

a_ = angular velocity of the motor shaft

Based on Eq. (1), the total resultant torque generated
by m motors driving a single device while operating at the

same speed is given by

k nDm __. Pij cos Oij (6)rp=
j:l i=1

where

i)
Oij = 011 + + ¢1j (7)

n

Pij = PA if cos Oij > 0 (8)

Pij = PB if cos Oij < 0 (9)

k = 0,4-1,4-2,4-3, ... (10)

while the minimum torque ripple is found to occur when

_r(j - 1)
Caj- -- ifn=2k+l (12)

tnn

2rr (j - 1)
81j - if n = 2k (13)

mn

k = 1,2,3,... (14)

If the motor phasing is given by Eqs. (12) through (14),
the total instantaneous torque generated by the hydraulic

motors is equivalent to the instantaneous torque gener-

ated by a single motor with a displacement of rnD and
2ran pistons if the motor has an odd number of pistons,

or a displacement of mD and mn pistons if the motor has

an even number of pistons. The approximations for the

generated torque given by [1],

D_AP

27r
[c1 Jr Icos(n 01)l] if n_ = 2k + 1

(15)

Tp_ _ Cx+C2 cos if n_ =4k-2

(16)

Tp _ 2-------_-C1 + C2 sin if ne = 4k

(17)

Ap= PA--PB (18)

and where the variables are defined as k = 1,2,3,... (19)
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can be used to analyze systems in which the ripple magni-
tude is either a maximum or a minimum in relationship to

the motor phasing. In these equations, De represents the

equivalent motor displacement, ne represents the equiva-

lent number of pistons, and C1 and C2 are nondimensional

constants presented in Tables 1 through 3. The variables

De and n_ are given by

D_=mD (20)

ne =n (21)

when the torque ripple magnitude is a maximum and

De=mD (22)

n,=mn ifn=2k (23)

ne=2mn ifn=2k+l (24)

when the torque ripple is a minimum. Notice that

ne=2n when m= 1 and n=2k+l (25)

Equation (25) shows why a manufacturer will not pro-

duce a motor with an even number of pistons, since a ripple
of lower magnitude can be achieved using fewer pistons if
there are an odd number of them.

KAi ---- 0 if cos Oi < 0 (29)

KBi =1 if cos Oi < 0 (30)

KBi = 0 if cosOi > 0 (31)

2_(i- 1)
0_=0_+ (32)

n

where

D = motor displacement per revolution

KAi = a constant

KBi ---- a constant

n = the number of pistons

QA = flow rate into motor port A

QB = flow rate into motor port B

Oi = angle of the ith piston with respect to the valve

plate, as shown in Fig. 1

w = angular velocity of the motor shaft

Under the conditions when multiple hydraulic motors

are operated, the total instantaneous flow rate through the

motors is found, using Eqs. (26) and (27), to be

= cosO, (33)
j=l i=l

B. Motor Flow

In applications where multiple hydraulic motors are

actuated using a single control element, flow variations

through the control element and pressure variations in the

hydraulic plumbing can be reduced by phasing the motors

properly. The flow rate derived from the rate at which
volume is swept by the motor pistons is given by [1]

Dw Z KAi cos Oi (26)Qa =
i=l

Q_ = _ Iim cos o; (27)
i=1

where

QB = _ )Bij cos t_ij (34)
j=l i=l

27r(i- 1)
O_j = 011 + + ¢1j (35)

12

KAi j -- 1 if cosOij > 0 (36)

IfAO : 0 if COSOij < 0 (37)

KBij = 1 if COS Oij < 0 (38)

KAi ----1 if cos Oi > 0 (28) KBij "- 0 if cos Oij > 0 (39)
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The variables are defined as

j = motor index number

KAij = a constant

[(Bij = a constant

¢1j = the phase angle of the first piston in motor j

0_j = the angle of piston i in motor j

Based upon Eqs. (33) through (39), the maximum flow

ripple through the control element occurs when

¢ij = 0 ifj = 1,2,3,...,m (40)

and the minimum occurs when

¢1i = 7r(j-1) if n=2k+l (41)
mn

(_lj -- 271" (j -- 1) if n = 2k (42)
mn

k = 1,2,3,... (43)

It is important to note that the motor phasing at

which the maximum and minimum flow ripples occur is

the same as the phasing at which the maxinmm and mini-
mum torque ripples occur. If the motor phasing is given by

Eqs. (41) through (43), the total instantaneous flow rate
through the control element is equivalent to the instanta-

neous flow rate of a single motor with a displacement of

mD and 2ran pistons if the motor has an odd number of

pistons, or a displacement of mD and mn pistons if the
motor has an even number of pistons. The approximations

for the instantaneous flow rate given by [1],

OeoJ _

QA_--_-_--[Cl-4-C21cos(neO,)[] if ne--2k+ 1 (44)

Q_4 _ cl+c_ cos ifne=4k-2 (45)

IQA _ C1+C2 sin ifne=4k (46)

QB = --QA (47)

k = 1,2, 3,... (48)

can be used to analyze systems in which the ripple magni-
tude is either a maximum or a minimum in relationship to

the motor phasing. In these equations De represents the

equivalent motor displacement, ne represents the equiva-
lent number of pistons, and C1 and C2 are nondimensional

constants presented in Tables 1 through 3. The variables
De and ne are given in Eqs. (20) through (24) since they

take on the same values as they do in the torque equations.

I!1.An Application

The Deep Space Network 70-m antenna hydraulic drive

system is considered here in order to apply the analysis

techniques presented. The drive system of the 70-m anten-
nas for each axis of motion consists of four hydraulic bent-

axis piston motors which are simultaneously controlled by

a single servovalve. In addition, there are four counter-
torque motors which have a constant differential pressure

maintained across the ports. The configuration of the sys-

tem for a single axis is shown in Fig. 2. The objective
of this analysis is to reduce the net torque variations ex-

perienced by the antenna at a given differential pressure

across the motors in order to improve the performance of

the position controller. On the 70-m antennas the follow-

ing parameter values apply:

D = 3.949 x 10-stun/revolution

(2.41 in.a/revolution) (49)

n=7 pistons (50)

m=4 motors (51)

Transmission line length between the servovalve

and motors 1 and 3 = 22.352 m (880 in.) (52)

Transmission line length between the servovalve

and motors 2 and 4 = 11.430 m (450 in.) (53)

The analysis begins by first considering the phasing of
the counter-torque motors. It is evident from Fig. 2 that

two of the counter-torque motors create a torque on the

antenna opposite the direction of the other two counter-

torque motors. Since the differential pressure across all of

the counter-torque motors is maintained at 4136.88 kilo-

pascals (kPa), or 600 pounds per square inch differential

(PSID), the instantaneous torque delivered to the antenna
can be maintained at zero independent of the angular posi-

tion of the antenna, if the counter-torque motors are all in
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phase. This occurs because the instantaneous torque gen-
erated by two of the counter-torque motors exactly can-

cels the instantaneous torque generated by the other two

counter-torque motors. The second consideration in re-

ducing the torque variations with respect to the antenna

angular position is the phasing of the four drive motors.

All of the hydraulic motors have approximately the same

pressure drop across the motor ports at any instant in time

since they are connected in parallel to the same servovalve.
Any differential pressure variations that exist among them

are due to the pressure drops across the various lengths

of pipe connecting the servovalve to each of the motors.

These pressure drops are generally assumed to be negligi-
ble since the flow rates through the pipes under tracking

conditions are very small in relation to the diameter of

the pipes. Hence, the optimal phasing for the four motors

with seven pistons each, as given by Eqs. (12) and (41), is

¢11 = 0 radians (54)

7r

¢1_ = _-_ radians (55)

¢13 =]-_radians (56)

371"

¢x4 = _ radians (57)

These phases were selected such that the motor pairs

(motor 1 and motor 3) and (motor 2 and motor 4) had the

optimal phasing of a two-motor drive system because the

length of the hydraulic line from the servovalve is the same

for each motor of a given pair. [See Eqs. (52) and (53).]
The total torque exerted on each antenna axis for both

the best and worst phasing of the motors and counter-
torque motors for a differential motor pressure of 4826.36

kPa (700 PSID) is presented in Fig. 3, and the total flow

passing through the motors for the best and worst phas-
ing of the motors and counter-torque motors for a rota-

tional speed of one radian per second is presented in Fig. 4.

Upon examination of Fig. 3, it is clear that the peak-to-

peak magnitude of the torque ripple experienced by the
antenna is approximately 1.5818 x 105 newton-meters (N-

m) under the worst phasing of the hydraulic motors and

countertorque motors, while the peak-to-peak magnitude

is approximately 5.3017 x 103 N-m under the best phasing
conditions. The 1.5818 x 105 N-m peak-to-peak amplitude

which occurs under the worst phasing conditions is con-

sidered significant since the amplitude is equivalent to the

axis torque created by a 2.69 m/see wind load [2]. Figure

4 shows that the flow variations experienced by the servo-

valve are 6.1416 x 10-7m3/sec and 3.8243 x 10-Sm3/sec

under the worst and best phasing conditions, respectively.

The results obtained through this analysis without con-

sideration of friction, leakage, or line capacitance indicate

that the performance of the 70-m antennas may be im-
proved by properly phasing the motors, thus reducing the

magnitude of system nonlinearities.

IV. Conclusion

Frequently multiple bent-axis piston type hydraulic mo-

tors are used to drive a single motion of a mechanical de-

vice. With this type of system configuration, the phase
of the pistons within each motor relative to the pistons of

the other motors can significantly affect the magnitude of

the torque ripple experienced by the device and the flow

variations experienced by the control element which pro-
vides fluid to the motors. This article has described how

the minimum torque and flow variations can be obtained.

An example related to the hydraulic system of the 70-m

antennas within the Deep Space Network illustrated how
the concepts presented can be applied to improve system

performance.
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Table 1. Nondimensiona! parameter values for ne = 2k -_- 1.

Number 2ra/DAP

of C1 G2 or

pistons 2_r a / Dw

3 9.1331e-01 1.3617e-01 2.1080e_3

5 9.6932e-01 4.8183e-02 8.0199e-04

7 9.8442e-01 2.4468e-02 4.1507e-04

9 9.9059e-01 1.4773e-02 2.5254e-04

11 9.9371e_31 9.8797e-03 1.6955e-04

13 9.9550e-01 7.0697e-03 1.2159e-04

15 9.9662e-01 5.3083e-03 9.1425e_35

17 9.9737e-01 4.1318e-03 7.1228e-05

19 9.9789e-O1 3.3072e-03 5.7050e-05

21 9.9828e-01 2.7069e-03 4.6717e-05

23 9.9856e-01 2.2564e-03 3.8956e-05

25 9.9878e_31 1.9097e-03 3.2979e_5

27 9.9896e_1 1.6372e-03 2.8279e-05

29 9.9910e_31 1.4191e-03 2.4516e-05

31 9.9921e-01 1.2418e-03 2.1457e-05

33 9.9930e-01 1.0958e-03 1.8936e_35

35 9.9938e--01 9.7415e-04 1.6835e-05

37 9.9945e-01 8.7166e-04 1.5065e--05

39 9.9950e-01 7.8454e-04 1.3560e-05

41 9.9955e_31 7.0985e-04 1.2270e_35

43 9.9959e-01 6.4535e-04 1.1156e-05

45 9.9962e-01 5.8925e-04 1.0187e-05

47 9.9966e-01 5.4017e-04 9.3383e-06

49 9.9968e-01 4.9697e-04 8.5918e_)6

51 9.9971 e-01 4.5875e-04 7.9313e_)6

Nulnb er

of

pistons

C] C2

2ra/DAP

or

53 9.9973e-01 4.2478e-04 7.3442e-06

55 9.9975e-01 3.9444e-04 6.8199e-06

57 9.9977e-01 3.6725e-04 6.3498e-06

59 9.9978e-01 3.4277e-04 5.9267e-06

61 9.9980e-01 3.2066e-04 5.5445e-06

63 9.9981e-01 3.0062e-04 5.1981e-D6

65 9.9982e-01 2.8241e-04 4.8832e-06

67 9.9983e-01 2.6580e-04 4.5961e-06

69 9.9984e-01 2.5061e-04 4.3335e-06

71 9.9985e-01 2.3669e-04 4.0929e-06

73 9.9986e-01 2.2390e-04 3.8717e-06

75 9.9986e-01 2.1212e-04 3.6680e-06

77 9.9987e-01 2.0124e-04 3.4799e-06

79 9.9988e-01 1.9118e-04 3.3060¢-06

81 9.9988e-01 1.8185e-04 3.1448e-06

83 9.9989e-01 1.7319e-04 2.9950e-06

85 9.9989e-01 1.6514e--04 2.8558e-06

87 9.9990e-01 1.5763e-04 2.7260e-06

89 9.9990e-01 1.5063e-04 2.6049e-06

91 9.9991e-01 1.4408e-04 2.4916e-06

93 9.9991e-01 1.3795e-04 2.3856e-06

95 9.9992e-01 1.3220e-04 2.2862e-06

97 9.9992e-01 1.2681e-04 2.1929e-06

99 9.9992e-01 1.2174e-04 2.1052e-06

C'1 = a dimensionless constant.

C2 = a dimensionless constant.

a = standard deviation of the approximation error.

2ra/DAP = standard deviation of the approximation error normalized with respect to the average torque.

2ra/Dw = standard deviation of the approximation error normalized with respect to the average flow rate.
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Table2.Nondlmensionalparametervaluesforne -_- 4k -- 2.

Number 2r a / D A P

of Cl C2 or

pistons 2ra/Dw

2 2.9905e-16 1.5708e+00 6.5742e-16

6 9.1331 e-O1 1.3617¢--01 2.1080e-03

10 9.6932e-01 4.8183e--02 8.0199e-04

14 9.8442e--01 2.4468e--02 4.1507e-04

18 9.9059e--01 1.4773e-02 2.5254e-04

22 9.9371e-01 9.8797e-03 1.6955e-04

26 9.9550e--01 7.0697e--03 1.2159e-04

30 9.9662e-01 5.3083e-03 9.1425e-05

34 9.9737e--01 4.1318e-03 7.1228e-05

38 9.9789e--01 3.3072e-03 5.7050e-05

42 9.9828e-01 2.7069e-03 4.6717e--05

46 9.9856e-01 2.2564e--03 3.8956e-05

50 9.9878e--01 1.9097e---03 3.2979e-05

54 9.9896e-01 1.6372e-03 2.8279e-05

58 9.9910e--01 1.4191e-03 2.4516e-05

62 9.9921 e--Ol 1.241 ge--03 2.1457e-05

66 9.9930e-01 1.0958e-03 1.8936e-05

70 9.9938e-01 9.7415e-04 1.6835e-05

74 9.9945e--01 8.7166e-04 1.5065e-05

78 9,9950e-01 7,8454e-04 1,3560e-05

82 9.9955e-01 7.0985e-04 1.2270e-05

86 9.9959e-01 6.4535e-04 1.1156e-05

90 9.9962e--01 5.8925e-04 1.0187e-05

94 9.9966e-01 5.4017e--04 9.3383e-06

98 9.9968e--01 4.9697e-04 8.5918e-06

C 1 = a dimensionless constant.

C2 = a dimensionless constant.

= standard deviation of the approximation error.

2ra/DAP = standard deviation of the approximation error nor-

realized with respect to the average torque.

2ra/Dw = standard deviation of the approximation error nor-

mallzed with respect to the average flow rate.

Table 3. Nondlmenslonal parameler values for ne -- 4k.

Number 2_ra /D A P

of C1 C2 or

pistons 2r a / Dta

4 7.9791e-01 3.1740e-01 4.2129e-03

8 9.5176e-01 7.5756e-02 1.2421e-03

12 9.7874e-01 3.3390e-02 5.6651e-04

16 9.8808e-01 1.8727e-02 3.2147e-04

20 9.9238e-01 1.1970e-02 2.0657e-04

24 9.9471e-01 8.3062e--03 1.4376e-04

28 9.9612e--01 6.0998e-03 1.0576e-04

32 9.9703e-01 4.668ge-03 8.1039e-05

36 9.9765e-01 3.6882e-03 6.4067e-05

40 9.9810e--Ol 2.9871e--03 5.1916e--05

44 9.9843e--01 2.4684e-03 4.2919e-05

48 9.9868e--01 2.0740e-03 3.6072e-05

52 9.9887e-01 1.7671 e-03 3.0742e-05

56 9.9903e--01 1.5236e-03 2.651 le-05

60 9.9915e--01 1.3271e-03 2.3096e-05

64 9.9926e-01 1.1664e-03 2.0301 e-05

68 9.9934e-01 1.0332e-03 1.7985e-05

72 9.9941 e-O 1 9.2155e-04 1.6043e-05

76 9.9947e---O 1 8.2709e-04 1.4399e-05

80 9.9952e-01 7.4643e-04 1.2996e-05

84 9.9957e-01 6.7703e-04 1.1788e-05

88 9.9961e-01 6.1687e-04 1.0741e-05

92 9.9964e-01 5.6439e-04 9.8280e-06

96 9.9967e--01 5.1833e--04 9.0263e-06

100 9.9970e-01 4.7769e-04 8.3188e-06

C1 = a dimensionless constant.

C2 = a dimensionless constant.

tr ----standard deviation of the approximation error.

2ra/DAP = standard deviation of the approximation error nor-

malized with respect to the average torque.

27ra/Dw = standard deviation of the approximation error nor-

realized with respect to the average flow rate.
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0i OI Oq

Fig. 1. The valve plate sealing surface of a bent-axls hydraullc

piston motor and the plston angle relative to the valve plate.
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C 1 C2

.J_ __

I--r- -r-

AP 4136.88 KILOPASCALS (kPa)

PS 17581.74 kPa

PR 193.05kPa

PC1 - PC2 4826.36 kPa

GEAR REDUCTION FROM MOTORS = 28723.63:1

CURVED ARROWS INDICATE THE
DIRECTION OF MOTOR TORQUE

Fig. 2. System configuration of the 70-m antenna azimuth axis.
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TORQUE MOTOR PHASING

/

WORST MOTORANDCOUNTER-
TORQUE MOTOR PHASING

3.35 J [ I I L I :
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
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Fig. 3. The 70-m antenna azlmulh axls torque as a function of

the antenna angular position for the best and worst phasing of

the hydraulic motors and counter-torque motors. The differential

pressure is 4826.36 kilopascals (kPa) for the drive motors and

4136.88 kPa for the counter-torque motors.
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2.55 BEST MOTOR PHASING
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Fig. 4. Total instantaneous motor flow rate through the 70-m an-

tenna azimuth hydraulic drive motors as a function of the antenna

angular position for the best and worst phasing of the hydraulic

motors. The angular velocity of the antenna is two millidegrees

per second, which corresponds to a one radian per second angu-

lar velocity of the hydraulic motor shafts.
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