Supermassive black hole binaries (SMBHBs) at sub-parsec separations should be
common in galactic nuclei, as a result of frequent galaxy mergers.
Hydrodynamical simulations of circumbinary discs predict strong periodic
modulation of the mass accretion rate on time-scales comparable to the orbital
period of the binary. As a result, SMBHBs may be recognized by the periodic
modulation of their brightness. We conducted a statistical search for periodic
variability in a sample of 35,383 spectroscopically confirmed quasars in the
photometric database of the Palomar Transient Factory (PTF). We analysed
Lomb-Scargle periodograms and assessed the significance of our findings by
modeling each individual quasar's variability as a damped random walk (DRW). We
identified 50 quasars with significant periodicity beyond the DRW model,
typically with short periods of a few hundred days. We find 33 of these to
remain significant after a re-analysis of their periodograms including
additional optical data from the intermediate-PTF and the Catalina Real-Time
Transient Survey (CRTS). Assuming that the observed periods correspond to the
redshifted orbital periods of SMBHBs, we conclude that our findings are
consistent with a population of unequal-mass SMBHBs, with a typical mass ratio
as low as q = M2/M1 ~ 0.01.Comment: MNRAS (accepted), new section 4.