17,444 research outputs found

    Conceptual design of the 6 MW Mod-5A wind turbine generator

    Get PDF
    The General Electric Company, Advanced Energy Programs Department, is designing under DOE/NASA sponsorship the MOD-5A wind turbine system which must generate electricity for 3.75 cent/KWH (1980) or less. During the Conceptual Design Phase, completed in March, 1981, the MOD-5A WTG system size and features were established as a result of tradeoff and optimization studies driven by minimizing the system cost of energy (COE). This led to a 400' rotor diameter size. The MOD-5A system which resulted is defined in this paper along with the operational and environmental factors that drive various portions of the design. Development of weight and cost estimating relationships (WCER's) and their use in optimizing the MOD-5A are discussed. The results of major tradeoff studies are also presented. Subsystem COE contributions for the 100th unit are shown along with the method of computation. Detailed descriptions of the major subsystems are given, in order that the results of the various trade and optimization studies can be more readily visualized

    A small helium liquifier which provides continuous cooling based on cycled isentropic expansion

    Get PDF
    This simple cryocooler provides a small reservoir of liquid helium at a stable temperature of 4.2K. It uses a novel adaptation of the Simon expansion cryocooler to provide continuous cooling. Operation is in a four stage cycle: (1) A closed vessel of helium under high pressure is cooled to 12K using a conventional Gifford-McMahon closed-cycle cryocooler. (2) The pressure is released adiabatically providing cooling to 4.2K. (3) Liquid helium is collected in a second, well insulated, vessel. (4) The first vessel is repressurized. The cycle time is 15-30 minutes. In this manner, a pool of liquid helium is continuously maintained in the second vessel, with a temperature stability of 0.03 degrees. The continuous cooling power available is 3mW. This design provides simplicity and reliability through the absence of any orifices or moving parts at cryogenic temperatures except for the conventional Gifford-McMahon cryocooler

    Possible Local Spiral Counterparts to Compact Blue Galaxies at Intermediate Redshift

    Get PDF
    We identify nearby disk galaxies with optical structural parameters similar to those of intermediate-redshift compact blue galaxies. By comparing HI and optical emission-line widths, we show that the optical widths substantially underestimate the true kinematic widths of the local galaxies. By analogy, optical emission-line widths may underrepresent the masses of intermediate-z compact objects. For the nearby galaxies, the compact blue morphology is the result of tidally-triggered central star formation: we argue that interactions and minor mergers may cause apparently compact morphology at higher redshift.Comment: 5 pages, uses emulateapj5 and psfig. To appear in ApJ

    Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    Get PDF
    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements

    Modal Analysis of the Orion Capsule Two Parachute System

    Get PDF
    As discussed in Ref [1], it is apparent from flight tests that the system made up of two main parachutes and a capsule can undergo several distinct dynamical behaviors. The most significant and problematic of these is the pendulum mode in which the system develops a pronounced swinging motion with an amplitude of up to 24 deg. Large excursions away from vertical by the capsule could cause it to strike the ground at a large horizontal or vertical speed and jeopardize the safety of the astronauts during a crewed mission. In reference [1], Ali et al. summarized a series of efforts taken by the Capsule Parachute Assembly System (CPAS) Program to understand and mitigate the pendulum issue. The period of oscillation and location of the system's pivot point are determined from post-flight analysis. Other noticeable but benign modes include: 1) flyout (scissors) mode, where the parachutes move back and forth symmetrically with respect to the vertical axis similar to the motion of a pair of scissors; 2) maypole mode, where the two parachutes circle around the vertical axis at a nearly constant radius and period; and 3) breathing mode, in which deformation of the non-rigid canopies affects the axial acceleration of the system in an oscillatory manner. Because these modes are relatively harm- less, little effort has been devoted to analyzing them in comparison with the pendulum motion. Motions of the actual system made up of two parachutes and a capsule are extremely complicated due to nonlinearities and flexibility effects. Often it is difficult to obtain insight into the fundamental dynamics of the system by examining results from a multi-body simulation based on nonlinear equations of motion (EOMs). As a part of this study, the dynamics of each mode observed during flight is derived from first principles on an individual basis by making numerous simplifications along the way. The intent is to gain a better understanding into the behavior of the complex multi-body system by studying the reduced set of differential equations associated with each mode. This approach is analogous to the traditional modal analysis technique used to study airplane flight dynamics, in which the full nonlinear behavior of the airframe is decomposed into the phugoid and short period modes for the longitudinal dynamics and the spiral, roll-subsidence, and dutch-roll modes for the lateral dynamics. It is important to note that the study does not address the mechanisms that cause the system to transition from one mode to another, nor does it discuss motions during which two or more modes occur simultaneously

    Casimir-Polder forces, boundary conditions and fluctuations

    Full text link
    We review different aspects of the atom-atom and atom-wall Casimir-Polder forces. We first discuss the role of a boundary condition on the interatomic Casimir-Polder potential between two ground-state atoms, and give a physically transparent interpretation of the results in terms of vacuum fluctuations and image atomic dipoles. We then discuss the known atom-wall Casimir-Polder force for ground- and excited-state atoms, using a different method which is also suited for extension to time-dependent situations. Finally, we consider the fluctuation of the Casimir-Polder force between a ground-state atom and a conducting wall, and discuss possible observation of this force fluctuation.Comment: 5 page

    Possibilities for pedagogy in Further Education: Harnessing the abundance of literacy

    Get PDF
    In this report, it is argued that the most salient factor in the contemporary communicative landscape is the sheer abundance and diversity of possibilities for literacy, and that the extent and nature of students' communicative resources is a central issue in education. The text outlines the conceptual underpinnings of the Literacies for Learning in Further Education project in a social view of literacy, and the associated research design, methodology and analytical framework. It elaborates on the notion of the abundance of literacies in students' everyday lives, and on the potential for harnessing these as resources for the enhancement of learning. It provides case studies of changes in practice that have been undertaken by further education staff in order to draw upon students' everyday literacy practices on Travel and Tourism and Multimedia courses. It ends with some of the broad implications for conceptualising learning that arise from researching through the lens of literacy practices

    Multi-wavelength visibility measurements of the red giant R Doradus

    Get PDF
    We present visibility measurements of the nearby Mira-like star R Doradus taken over a wide range of wavelengths (650--990 nm). The observations were made using MAPPIT (Masked APerture-Plane Interference Telescope), an interferometer operating at the 3.9-m Anglo-Australian Telescope. We used a slit to mask the telescope aperture and prism to disperse the interference pattern in wavelength. We observed in R Dor strong decreases in visibility within the TiO absorption bands. The results are in general agreement with theory but differ in detail, suggesting that further work is needed to refine the theoretical models.Comment: 8 pages; SPIE Conf. 4006 "Interferometry in Optical Astronomy

    Assessing Alternatives for Directional Detection of a WIMP Halo

    Get PDF
    The future of direct terrestrial WIMP detection lies on two fronts: new, much larger low background detectors sensitive to energy deposition, and detectors with directional sensitivity. The former can large range of WIMP parameter space using well tested technology while the latter may be necessary if one is to disentangle particle physics parameters from astrophysical halo parameters. Because directional detectors will be quite difficult to construct it is worthwhile exploring in advance generally which experimental features will yield the greatest benefits at the lowest costs. We examine the sensitivity of directional detectors with varying angular tracking resolution with and without the ability to distinguish forward versus backward recoils, and compare these to the sensitivity of a detector where the track is projected onto a two-dimensional plane. The latter detector regardless of where it is placed on the Earth, can be oriented to produce a significantly better discrimination signal than a 3D detector without this capability, and with sensitivity within a factor of 2 of a full 3D tracking detector. Required event rates to distinguish signals from backgrounds for a simple isothermal halo range from the low teens in the best case to many thousands in the worst.Comment: 4 pages, including 2 figues and 2 tables, submitted to PR

    Stress Tensor Correlators in the Schwinger-Keldysh Formalism

    Full text link
    We express stress tensor correlators using the Schwinger-Keldysh formalism. The absence of off-diagonal counterterms in this formalism ensures that the +- and -+ correlators are free of primitive divergences. We use dimensional regularization in position space to explicitly check this at one loop order for a massless scalar on a flat space background. We use the same procedure to show that the ++ correlator contains the divergences first computed by `t Hooft and Veltman for the scalar contribution to the graviton self-energy.Comment: 14 pages, LaTeX 2epsilon, no figures, revised for publicatio
    corecore