13,882 research outputs found

    Semiclassical Gravity Theory and Quantum Fluctuations

    Get PDF
    We discuss the limits of validity of the semiclassical theory of gravity in which a classical metric is coupled to the expectation value of the stress tensor. It is argued that this theory is a good approximation only when the fluctuations in the stress tensor are small. We calculate a dimensionless measure of these fluctuations for a scalar field on a flat background in particular cases, including squeezed states and the Casimir vacuum state. It is found that the fluctuations are small for states which are close to a coherent state, which describes classical behavior, but tend to be large otherwise. We find in all cases studied that the energy density fluctuations are large whenever the local energy density is negative. This is taken to mean that the gravitational field of a system with negative energy density, such as the Casimir vacuum, is not described by a fixed classical metric but is undergoing large metric fluctuations. We propose an operational scheme by which one can describe a fluctuating gravitational field in terms of the statistical behavior of test particles. For this purpose we obtain an equation of the form of the Langevin equation used to describe Brownian motion.Comment: In REVTEX. 20pp + 4 figures(not included, available upon request) TUTP-93-

    Letters from L. L. Lewis, Barton O. Aylesworth, and B. C. Buffum

    Get PDF
    Letters of recommendation for Elmer D. Ball

    Large-area CCD imagers for spacecraft applications

    Get PDF
    Backside illuminated CCD imagers with 100 x 160 resolution elements have been fabricated using double level metal technology. Detailed study of the optical performance of such arrays has been performed between 24 C and -40 C using data rates from 10 kHz to 1 MHz. A 400 x 400 array is presently being fabricated

    Novel features of the energy momentum tensor of a Casimir apparatus in a weak gravitational field

    Full text link
    The influence of the gravity acceleration on the regularized energy-momentum tensor of the quantized electromagnetic field between two plane parallel conducting plates is derived. A perturbative expansion, to first order in the constant acceleration parameter, of the Green functions involved and of the energy-momentum tensor is derived by means of the covariant geodesic point splitting procedure. The energy-momentum tensor is covariantly conserved and satisfies the expected relation between gauge-breaking and ghost parts.Comment: 8 pages, based on a talk given by Luigi Rosa at the QFEXT07 Conference, Leipzig. Equation (13) and the formulae for rho and energy E stored in the Casimir device have been amended, jointly with related discussio

    Fluctuations of the vacuum energy density of quantum fields in curved spacetime via generalized zeta functions

    Get PDF
    For quantum fields on a curved spacetime with an Euclidean section, we derive a general expression for the stress energy tensor two-point function in terms of the effective action. The renormalized two-point function is given in terms of the second variation of the Mellin transform of the trace of the heat kernel for the quantum fields. For systems for which a spectral decomposition of the wave opearator is possible, we give an exact expression for this two-point function. Explicit examples of the variance to the mean ratio Δ=(2)/(2)\Delta' = (-^2)/(^2) of the vacuum energy density ρ\rho of a massless scalar field are computed for the spatial topologies of Rd×S1R^d\times S^1 and S3S^3, with results of Δ(Rd×S1)=(d+1)(d+2)/2\Delta'(R^d\times S^1) =(d+1)(d+2)/2, and Δ(S3)=111\Delta'(S^3) = 111 respectively. The large variance signifies the importance of quantum fluctuations and has important implications for the validity of semiclassical gravity theories at sub-Planckian scales. The method presented here can facilitate the calculation of stress-energy fluctuations for quantum fields useful for the analysis of fluctuation effects and critical phenomena in problems ranging from atom optics and mesoscopic physics to early universe and black hole physics.Comment: Uses revte

    Semiclassical Casimir Energies at Finite Temperature

    Get PDF
    We study the dependence on the temperature T of Casimir effects for a range of systems, and in particular for a pair of ideal parallel conducting plates, separated by a vacuum. We study the Helmholtz free energy, combining Matsubara's formalism, in which the temperature appears as a periodic Euclidean fourth dimension of circumference 1/T, with the semiclassical periodic orbital approximation of Gutzwiller. By inspecting the known results for the Casimir energy at T=0 for a rectangular parallelepiped, one is led to guess at the expression for the free energy of two ideal parallel conductors without performing any calculation. The result is a new form for the free energy in terms of the lengths of periodic classical paths on a two-dimensional cylinder section. This expression for the free energy is equivalent to others that have been obtained in the literature. Slightly extending the domain of applicability of Gutzwiller's semiclassical periodic orbit approach, we evaluate the free energy at T>0 in terms of periodic classical paths in a four-dimensional cavity that is the tensor product of the original cavity and a circle. The validity of this approach is at present restricted to particular systems. We also discuss the origin of the classical form of the free energy at high temperatures.Comment: 17 pages, no figures, Late

    Mesospheric Density Climatologies Determined at Midlatitudes Using Rayleigh Lidar

    Get PDF
    The original Rayleigh-scatter lidar that operated at the Atmospheric Lidar Observatory (ALO; 41.7°N, 111.8°W) in the Center for Atmospheric and Space Sciences (CASS) on the campus of Utah State University (USU), collected 11 years of data between 1993 and 2004. From Rayleigh lidar photon-count returns, relative densities throughout the mesosphere, from 45 to 90 km, were determined. Using these relative densities, three climatologies are derived, each using a different density normalization method at 45 km: the first method normalized the relative densities to a constant; the second normalized them to the NRLMSISe00 empirical model; and the third normalized them to the CPC analyses, a first principles, assimilative, meteorological model. From there, the average density profile for each night of the composite year is found by averaging the nighttime density profiles in a multi-year, 31-day window centered on that particular night. From these three density climatologies, some different and many common features in the mesospheric densities are evident. In the future, with improvements to the lidar, it will be possible to provide an absolute normalization for the density profiles

    The Energy Density in the Casimir Effect

    Get PDF
    We compute the expectations of the squares of the electric and magnetic fields in the vacuum region outside a half-space filled with a uniform dispersive dielectric. We find a positive energy density of the electromagnetic field which diverges at the interface despite the inclusion of dispersion in the calculation. We also investigate the mean squared fields and the energy density in the vacuum region between two parallel half-spaces. Of particular interest is the sign of the energy density. We find that the energy density is described by two terms: a negative position independent (Casimir) term, and a positive position dependent term with a minimum value at the center of the vacuum region. We argue that in some cases, including physically realizable ones, the negative term can dominate in a given region between the two half-spaces, so the overall energy density can be negative in this region.Comment: 16 pages, 4 figures; 3 references and some new material in Sect. 4.4 adde
    corecore