130 research outputs found

    Climate Change Challenges for Land Conservation: Rethinking Conservation Easements, Strategies, and Tools

    Get PDF
    Climate change has significant consequences for land conservation. Government agencies and nonprofit land trusts heavily rely on perpetual conservation easements. However, climate change and other dynamic landscape changes raise questions about the effectiveness and adaptability of permanent conservation instruments like conservation easements. Building upon a study of 269 conservation easements and interviews with seventy conservation-easement professionals in six different states, we examine the adaptability of conservation easements to climate change. We outline four potential approaches to enhance conservation outcomes under climate change: (1) shift land-acquisition priorities to account for potential climate-change impacts; (2) consider conservation tools other than perpetual conservation easements; (3) ensure that the terms of conservation easements permit the holder to adapt to climate change successfully; and (4) provide for more active stewardship of conservation lands. There is still a good deal of uncertainty as to the legal fate of a conservation easement that no longer meets its original purposes. Many state laws provide that conservation easements can be modified or terminated in the same manner as traditional easements. Yet, conservation easements are in many ways unlike other easements. The beneficiary is usually the public, not merely a neighboring landowner, and the holder is always a non-profit conservation organization or a government agency. Thus, there is a case to be made for adaptive protection. An overly narrow focus on perpetual property rights could actually thwart efforts to meet adaptation needs over the long term. We call for careful attention to ensuring conservation outcomes in dynamic landscapes over time

    Climate Change Challenges for Land Conservation: Rethinking Conservation Easements, Strategies, and Tools

    Get PDF
    Climate change has significant consequences for land conservation. Government agencies and nonprofit land trusts heavily rely on perpetual conservation easements. However, climate change and other dynamic landscape changes raise questions about the effectiveness and adaptability of permanent conservation instruments like conservation easements. Building upon a study of 269 conservation easements and interviews with seventy conservation-easement professionals in six different states, we examine the adaptability of conservation easements to climate change. We outline four potential approaches to enhance conservation outcomes under climate change: (1) shift land-acquisition priorities to account for potential climate change impacts; (2) consider conservation tools other than perpetual conservation easements; (3) ensure that the terms of conservation easements permit the holder to adapt to climate change successfully; and (4) provide for more active stewardship of conservation lands. There is still a good deal of uncertainty as to the legal fate of a conservation easement that no longer meets its original purposes. Many state laws provide that conservation easements can be modified or terminated in the same manner as traditional easements. Yet conservation easements are in many ways unlike other easements. The beneficiary is usually the public, not merely a neighboring landowner, and the holder is always a nonprofit conservation organization or a government agency. Thus, there is a case to be made for adaptive protection. An overly narrow focus on perpetual property rights could actually thwart efforts to meet adaptation needs over the long term. We call for careful attention to ensuring conservation outcomes in dynamic landscapes over time

    Processing of alcohol-related health threat in at-risk drinkers: an online study of gender-related self-affirmation effects

    Get PDF
    Aims: Defensiveness in response to threatening health information related to excessive alcohol consumption prevents appropriate behaviour change. Alternatively, self-affirmation may improve cognitive-affective processing of threatening information, thus contributing to successful self-regulation. Methods: Effects of an online self-affirmation procedure were examined in at-risk university student drinkers. Participants were randomly assigned to a self-affirmation (writing about personally relevant values) or control task (writing about values relevant to another person) prior to presentation of alcohol-related threatening information. Assessment of prosocial feelings (e.g. β€˜love’) after the task served as a manipulation check. Generic and personalized information regarding the link between alcohol use and cancer was presented, followed by assessment of perceived threat, message avoidance and derogation. Page dwell-times served as indirect indices of message engagement. Alcohol consumption and intention to drink less were assessed during the first online session and at 1-week and 1-month follow-up. Results: Although self-affirmation resulted in higher levels of prosocial feelings immediately after the task, there was no effect on behaviour in the self-affirmation group. Effects on intention were moderated by gender, such that men showed lower intention immediately after self-affirmation, but this increased at 1-week follow-up. Women's intention to reduce consumption in the self-affirmation group reduced over time. Trend-level effects on indices of derogation and message acceptance were in the predicted direction only in men. Conclusion: It is feasible to perform self-affirmation procedures in an online environment with at-risk drinkers. However, use of internet-based procedures with this population may give rise to (gender-dependent) effects that are substantially diluted compared with lab-based experiments

    Limited life cycle and cost assessment for the bioconversion of lignin-derived aromatics into adipic acid

    Get PDF
    Lignin is an abundant and heterogeneous waste byproduct of the cellulosic industry, which has the potential of being transformed into valuable biochemicals via microbial fermentation. In this study, we applied a fast-pyrolysis process using softwood lignin resulting in a two-phase bio-oil containing monomeric and oligomeric aromatics without syringol. We demonstrated that an additional hydrodeoxygenation step within the process leads to an enhanced thermochemical conversion of guaiacol into catechol and phenol. After steam bath distillation, Pseudomonas putida KT2440-BN6 achieved a percent yield of cis, cis-muconic acid of up to 95 mol% from catechol derived from the aqueous phase. We next established a downstream process for purifying cis, cis-muconic acid (39.9 g/L) produced in a 42.5 L fermenter using glucose and benzoate as carbon substrates. On the basis of the obtained values for each unit operation of the empirical processes, we next performed a limited life cycle and cost analysis of an integrated biotechnological and chemical process for producing adipic acid and then compared it with the conventional petrochemical route. The simulated scenarios estimate that by attaining a mixture of catechol, phenol, cresol, and guaiacol (1:0.34:0.18:0, mol ratio), a titer of 62.5 (g/L) cis, cis-muconic acid in the bioreactor, and a controlled cooling of pyrolysis gases to concentrate monomeric aromatics in the aqueous phase, the bio-based route results in a reduction of CO2 -eq emission by 58% and energy demand by 23% with a contribution margin for the aqueous phase of up to 88.05 euro/ton. We conclude that the bio-based production of adipic acid from softwood lignins brings environmental benefits over the petrochemical procedure and is cost-effective at an industrial scale. Further research is essential to achieve the proposed cis, cis-muconic acid yield from true lignin-derived aromatics using whole-cell biocatalysts

    The Complete Genome of Teredinibacter turnerae T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms)

    Get PDF
    Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host's nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels

    The Complete Genome of \u3cem\u3eTeredinibacter turnerae\u3c/em\u3e T7901: An Intracellular Endosymbiont of Marine Wood-Boring Bivalves (Shipworms)

    Get PDF
    Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the host\u27s nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (\u3e100). However, unlike S. degradans, which degrades a broad spectrum (\u3e10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels

    The Heme Biosynthetic Pathway of the Obligate Wolbachia Endosymbiont of Brugia malayi as a Potential Anti-filarial Drug Target

    Get PDF
    Human filarial nematodes are causative agents of elephantiasis and African river blindness, which are among the most debilitating tropical diseases. Currently used drugs mainly affect microfilariae (mf) and have less effect on adult filarial nematodes, which can live in the human host for more than a decade. Filariasis drug control strategy relies on recurrent mass drug administration for many years. Development of novel drugs is also urgently needed due to the threat of drug resistance occurrence. Most filarial worms harbor an obligate endosymbiotic bacterium, Wolbachia, whose presence has been identified as a potential drug target. Comparative genomics had suggested Wolbachia heme biosynthesis as a potential drug target, and we present an analysis of selected enzymes alongside their human homologues from several different aspectsβ€”gene phylogenetic analyses, in vitro enzyme kinetic and inhibition assays and heme-deficient E. coli complementation assays. We also conducted ex vivo Brugia malayi viability assays using heme pathway inhibitors. These experiments demonstrate that heme biosynthesis could be critical for filarial worm survival and thus is a potential anti-filarial drug target set

    The Characterization of Twenty Sequenced Human Genomes

    Get PDF
    We present the analysis of twenty human genomes to evaluate the prospects for identifying rare functional variants that contribute to a phenotype of interest. We sequenced at high coverage ten β€œcase” genomes from individuals with severe hemophilia A and ten β€œcontrol” genomes. We summarize the number of genetic variants emerging from a study of this magnitude, and provide a proof of concept for the identification of rare and highly-penetrant functional variants by confirming that the cause of hemophilia A is easily recognizable in this data set. We also show that the number of novel single nucleotide variants (SNVs) discovered per genome seems to stabilize at about 144,000 new variants per genome, after the first 15 individuals have been sequenced. Finally, we find that, on average, each genome carries 165 homozygous protein-truncating or stop loss variants in genes representing a diverse set of pathways

    A Ligand Peptide Motif Selected from a Cancer Patient Is a Receptor-Interacting Site within Human Interleukin-11

    Get PDF
    Interleukin-11 (IL-11) is a pleiotropic cytokine approved by the FDA against chemotherapy-induced thrombocytopenia. From a combinatorial selection in a cancer patient, we isolated an IL-11-like peptide mapping to domain I of the IL-11 (sequence CGRRAGGSC). Although this motif has ligand attributes, it is not within the previously characterized interacting sites. Here we design and validate in-tandem binding assays, site-directed mutagenesis and NMR spectroscopy to show (i) the peptide mimics a receptor-binding site within IL-11, (ii) the binding of CGRRAGGSC to the IL-11RΞ± is functionally relevant, (iii) Arg4 and Ser8 are the key residues mediating the interaction, and (iv) the IL-11-like motif induces cell proliferation through STAT3 activation. These structural and functional results uncover an as yet unrecognized receptor-binding site in human IL-11. Given that IL-11RΞ± has been proposed as a target in human cancer, our results provide clues for the rational design of targeted drugs
    • …
    corecore