173 research outputs found

    Emerging role of gefitinib in the treatment of non-small-cell lung cancer (NSCLC)

    Get PDF
    Most patients with non-small-cell lung cancer (NSCLC) present with advanced disease and their long-term prognosis remains poor. Epidermal growth factor receptor (EGFR)-targeted therapies, such as gefitinib, have been subjected to comprehensive clinical development. Several phase II and III trials evaluated the clinical efficacy of gefitinib as monotherapy in pretreated patients with advanced NSCLC, as well as both monotherapy and combined with chemotherapy in chemotherapy-naive patients. A phase III trial (ISEL) in heavily pretreated advanced NSCLC patients demonstrated some improvement in survival with gefitinib compared with placebo; however, the difference was not statistically significant within the overall population. A large phase III trial in pretreated patients (INTEREST) demonstrated the non-inferiority of gefitinib in comparison with docetaxel for overall survival, together with an improved quality of life and tolerability profiles. In a large phase III trial (IPASS) in Asian chemotherapy-naive, never or former light-smoker patients with adenocarcinoma, gefitinib was more effective than carboplatin–paclitaxel in prolonging progression-free survival, particularly in patients harboring EGFR gene mutations. Gefitinib was a generally well tolerated treatment, with skin rash and diarrhea being the most common treatment adverse events. As a result, gefitinib is expected to have a large impact on the management of patients with advanced NSCLC, in particular in EGFR mutated patients

    Comment on "Critique of the foundations of time-dependent density functional theory" [Phys. Rev.A. 75, 022513 (2007)]

    Full text link
    A recent paper (Phys. Rev A. 75, 022513 (2007), arXiv:cond-mat/0602020) challenges exact time-dependent density functional theory (TDDFT) on several grounds. We explain why these criticisms are either irrelevant or incorrect, and that TDDFT is both formally exact and predictive.Comment: 4 pages; This is a Comment on the paper cited above, also at arXiv:cond-mat/060202

    Density-functional embedding using a plane-wave basis

    Full text link
    The constrained electron density method of embedding a Kohn-Sham system in a substrate system (first described by P. Cortona, Phys. Rev. B {\bf 44}, 8454 (1991) and T.A. Wesolowski and A. Warshel, J. Phys. Chem {\bf 97}, 8050 (1993)) is applied with a plane-wave basis and both local and non-local pseudopotentials. This method divides the electron density of the system into substrate and embedded electron densities, the sum of which is the electron density of the system of interest. Coupling between the substrate and embedded systems is achieved via approximate kinetic energy functionals. Bulk aluminium is examined as a test case for which there is a strong interaction between the substrate and embedded systems. A number of approximations to the kinetic-energy functional, both semi-local and non-local, are investigated. It is found that Kohn-Sham results can be well reproduced using a non-local kinetic energy functional, with the total energy accurate to better than 0.1 eV per atom and good agreement between the electron densities.Comment: 11 pages, 4 figure

    The High-Acceptance Dielectron Spectrometer HADES

    Get PDF
    HADES is a versatile magnetic spectrometer aimed at studying dielectron production in pion, proton and heavy-ion induced collisions. Its main features include a ring imaging gas Cherenkov detector for electron-hadron discrimination, a tracking system consisting of a set of 6 superconducting coils producing a toroidal field and drift chambers and a multiplicity and electron trigger array for additional electron-hadron discrimination and event characterization. A two-stage trigger system enhances events containing electrons. The physics program is focused on the investigation of hadron properties in nuclei and in the hot and dense hadronic matter. The detector system is characterized by an 85% azimuthal coverage over a polar angle interval from 18 to 85 degree, a single electron efficiency of 50% and a vector meson mass resolution of 2.5%. Identification of pions, kaons and protons is achieved combining time-of-flight and energy loss measurements over a large momentum range. This paper describes the main features and the performance of the detector system

    Successful management of multiple permanent pacemaker complications – infection, 13 year old silent lead perforation and exteriorisation following failed percutaneous extraction, superior vena cava obstruction, tricuspid valve endocarditis, pulmonary embolism and prosthetic tricuspid valve thrombosis

    Get PDF
    A 59 year old man underwent mechanical tricuspid valve replacement and removal of pacemaker generator along with 4 pacemaker leads for pacemaker endocarditis and superior vena cava obstruction after an earlier percutaneous extraction had to be abandoned, 13 years ago, due to cardiac arrest, accompanied by silent, unsuspected right atrial perforation and exteriorisation of lead. Postoperative course was complicated by tricuspid valve thrombosis and secondary pulmonary embolism requiring TPA thrombolysis which was instantly successful. A review of literature of pacemaker endocarditis and tricuspid thrombosis along with the relevant management strategies is presented. We believe this case report is unusual on account of non operative management of right atrial lead perforation following an unsuccessful attempt at percutaneous removal of right sided infected pacemaker leads and the incidental discovery of the perforated lead 13 years later at sternotomy, presentation of pacemaker endocarditis with a massive load of vegetations along the entire pacemaker lead tract in superior vena cava, right atrial endocardium, tricuspid valve and right ventricular endocardium, leading to a functional and structural SVC obstruction, requirement of an unusually large dose of warfarin postoperatively occasioned, in all probability, by antibiotic drug interactions, presentation of tricuspid prosthetic valve thrombosis uniquely as vasovagal syncope and isolated hypoxia and near instantaneous resolution of tricuspid prosthetic valve thrombosis with Alteplase thrombolysis

    Mendelian Randomization Analysis of the Relationship Between Native American Ancestry and Gallbladder Cancer Risk

    Full text link
    Background A strong association between the proportion of Native American ancestry and the risk of gallbladder cancer (GBC) has been reported in observational studies. Chileans show the highest incidence of GBC worldwide, and the Mapuche are the largest Native American people in Chile. We set out to investigate the causal association between Native American Mapuche ancestry and GBC risk, and the possible mediating effects of gallstone disease and body mass index (BMI) on this association. Methods Markers of Mapuche ancestry were selected based on the informativeness for assignment measure and then used as instrumental variables in two-sample mendelian randomization (MR) analyses and complementary sensitivity analyses. Result We found evidence of a causal effect of Mapuche ancestry on GBC risk (inverse variance-weighted (IVW) risk increase of 0.8% for every 1% increase in Mapuche ancestry proportion, 95% CI 0.4% to 1.2%, p = 6.6×10-5). Mapuche ancestry was also causally linked to gallstone disease (IVW risk increase of 3.6% per 1% increase in Mapuche proportion, 95% CI 3.1% to 4.0%, p = 1.0×10-59), suggesting a mediating effect of gallstones in the relationship between Mapuche ancestry and GBC. In contrast, the proportion of Mapuche ancestry showed a negative causal effect on BMI (IVW estimate -0.006 kg/m2 per 1% increase in Mapuche proportion, 95% CI -0.009 to -0.003, p = 4.4×10-5). Conclusions The results presented here may have significant implications for GBC prevention and are important for future admixture mapping studies. Given that the association between Mapuche ancestry and GBC risk previously noted in observational studies appears to be causal, primary and secondary prevention strategies that take into account the individual proportion of Mapuche ancestry could be particularly efficient

    Reorganization Energy for Internal Electron Transfer in Multicopper Oxidases.

    Get PDF
    We have calculated the reorganization energy for the intramolecular electron transfer between the reduced type 1 copper site and the peroxy intermediate of the trinuclear cluster in the multicopper oxidase CueO. The calculations are performed at the combined quantum mechanics and molecular mechanics (QM/MM) level, based on molecular dynamics simulations with tailored potentials for the two copper sites. We obtain a reorganization energy of 91-133 kJ/mol, depending on the theoretical treatment. The two Cu sites contribute by 12 and 22 kJ/mol to this energy, whereas the solvent contribution is 34 kJ/mol. The rest comes from the protein, involving small contributions from many residues. We have also estimated the energy difference between the two electron-transfer states and show that the reduction of the peroxy intermediate is exergonic by 43-87 kJ/mol, depending on the theoretical method. Both the solvent and the protein contribute to this energy difference, especially charged residues close to the two Cu sites. We compare these estimates with energies obtained from QM/MM optimizations and QM calculations in a vacuum and discuss differences between the results obtained at various levels of theory

    Epoxide as a precursor to secondary organic aerosol formation from isoprene photooxidation in the presence of nitrogen oxides

    Get PDF
    Isoprene is a substantial contributor to the global secondary organic aerosol (SOA) burden, with implications for public health and the climate system. The mechanism by which isoprene-derived SOA is formed and the influence of environmental conditions, however, remain unclear. We present evidence from controlled smog chamber experiments and field measurements that in the presence of high levels of nitrogen oxides (NOx = NO + NO2) typical of urban atmospheres, 2-methyloxirane-2-carboxylic acid (methacrylic acid epoxide, MAE) is a precursor to known isoprene-derived SOA tracers, and ultimately to SOA. We propose that MAE arises from decomposition of the OH adduct of methacryloylperoxynitrate (MPAN). This hypothesis is supported by the similarity of SOA constituents derived from MAE to those from photooxidation of isoprene, methacrolein, and MPAN under high-NOx conditions. Strong support is further derived from computational chemistry calculations and Community Multiscale Air Quality model simulations, yielding predictions consistent with field observations. Field measurements taken in Chapel Hill, North Carolina, considered along with the modeling results indicate the atmospheric significance and relevance of MAE chemistry across the United States, especially in urban areas heavily impacted by isoprene emissions. Identification of MAE implies a major role of atmospheric epoxides in forming SOA from isoprene photooxidation. Updating current atmospheric modeling frameworks with MAE chemistry could improve the way that SOA has been attributed to isoprene based on ambient tracer measurements, and lead to SOA parameterizations that better capture the dependency of yield on NOx
    corecore